論文の概要: Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models
- arxiv url: http://arxiv.org/abs/2407.02744v1
- Date: Wed, 3 Jul 2024 01:37:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 15:54:34.724804
- Title: Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models
- Title(参考訳): 拡散モデルの入射神経表現誘導後サンプリングによる高加速度MRI
- Authors: Jiayue Chu, Chenhe Du, Xiyue Lin, Yuyao Zhang, Hongjiang Wei,
- Abstract要約: Inlicit Neural representation (INR) は、逆問題を解決するための強力なパラダイムとして登場した。
提案するフレームワークは、他の医療画像タスクにおける逆問題を解決するための一般化可能なフレームワークである。
- 参考スコア(独自算出の注目度): 2.5412006057370893
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reconstructing high-fidelity magnetic resonance (MR) images from under-sampled k-space is a commonly used strategy to reduce scan time. The posterior sampling of diffusion models based on the real measurement data holds significant promise of improved reconstruction accuracy. However, traditional posterior sampling methods often lack effective data consistency guidance, leading to inaccurate and unstable reconstructions. Implicit neural representation (INR) has emerged as a powerful paradigm for solving inverse problems by modeling a signal's attributes as a continuous function of spatial coordinates. In this study, we present a novel posterior sampler for diffusion models using INR, named DiffINR. The INR-based component incorporates both the diffusion prior distribution and the MRI physical model to ensure high data fidelity. DiffINR demonstrates superior performance on experimental datasets with remarkable accuracy, even under high acceleration factors (up to R=12 in single-channel reconstruction). Notably, our proposed framework can be a generalizable framework to solve inverse problems in other medical imaging tasks.
- Abstract(参考訳): アンダーサンプリングされたk空間から高密度磁気共鳴(MR)像を再構成することは、スキャン時間を短縮するための一般的な戦略である。
実測データに基づく拡散モデルの後方サンプリングは、再構成精度を向上する大きな可能性を秘めている。
しかし、従来の後方サンプリング手法はデータ一貫性の効果的なガイダンスを欠くことが多く、不正確で不安定な再構築につながった。
Inlicit Neural representation (INR) は、信号の属性を空間座標の連続関数としてモデル化することで、逆問題を解決するための強力なパラダイムとして登場した。
本研究では,INR(DiffINR)を用いた拡散モデルのための新しい後部サンプリング手法を提案する。
INRベースのコンポーネントは拡散先行分布とMRI物理モデルの両方を組み込んで、高いデータ忠実性を保証する。
DiffINRは、高い加速係数(シングルチャネル再構成ではR=12まで)の下でも、顕著な精度で実験データセット上で優れた性能を示す。
特に,本提案フレームワークは,他の医療画像タスクにおける逆問題を解決するための一般化可能なフレームワークである。
関連論文リスト
- Ambient Diffusion Posterior Sampling: Solving Inverse Problems with
Diffusion Models trained on Corrupted Data [56.81246107125692]
Ambient Diffusion Posterior Smpling (A-DPS) は、ある種類の腐敗に対して事前訓練された生成モデルである。
A-DPSは、いくつかの画像復元タスクにおいて、クリーンなデータで訓練されたモデルよりも、速度と性能の両方で優れていることが示される。
我々はAmbient Diffusionフレームワークを拡張して、FourierサブサンプルのマルチコイルMRI測定にのみアクセスしてMRIモデルをトレーニングする。
論文 参考訳(メタデータ) (2024-03-13T17:28:20Z) - Fast Controllable Diffusion Models for Undersampled MRI Reconstruction [9.257507373275288]
本研究は,MRIのアンダーサンプル再構成のための拡散モデルの制御可能な生成を促進させる,Predictor-Projector-Noisor (PPN) と呼ばれる新しいアルゴリズムを提案する。
以上の結果から, PPNは, 他の制御可能なサンプリング法に比べて, 再構成時間を大幅に短縮した, アンサンプ付きk空間計測に適合した高忠実MR画像を生成することがわかった。
論文 参考訳(メタデータ) (2023-11-20T05:58:05Z) - K-space Cold Diffusion: Learning to Reconstruct Accelerated MRI without
Noise [2.982793366290863]
ガウス雑音を伴わずにk空間における画像劣化と復元を行うk空間冷拡散モデルを提案する。
以上の結果から, この新たな劣化処理により, 高速MRIのための高品質な再構成画像が生成できることが示唆された。
論文 参考訳(メタデータ) (2023-11-16T19:34:18Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
拡散モデルは、高い試料品質のため、MRIの再生を加速するために人気を博している。
推論時に柔軟にフォワードモデルを組み込んだまま、効果的にリッチなデータプリエントとして機能することができる。
拡散モデル(SMRD)を用いたSUREに基づくMRI再構成を導入し,テスト時の堅牢性を向上する。
論文 参考訳(メタデータ) (2023-10-03T05:05:35Z) - Self-Supervised MRI Reconstruction with Unrolled Diffusion Models [27.143473617162304]
自己監督型拡散再構成モデル(SSDiffRecon)を提案する。
SSDiffReconは、物理駆動処理のためのデータ一貫性ブロックと逆拡散ステップのためのクロスアテンショントランスフォーマーをインターリーブする条件拡散プロセスを表現する。
公開脳MRデータセットを用いた実験は、SSDiffReconの再構築速度と品質の点で、最先端の教師付きベースラインと自己教師付きベースラインに対する優位性を示す。
論文 参考訳(メタデータ) (2023-06-29T03:31:46Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Spatiotemporal implicit neural representation for unsupervised dynamic
MRI reconstruction [11.661657147506519]
Inlicit Neuraltruth (INR) は逆問題を解決するための強力なDLベースのツールとして登場した。
本研究では,高度にアンサンプされたk空間データから動的MRI再構成を改善するためのINRに基づく手法を提案する。
提案したINRは、ダイナミックMRI画像を暗黙の関数として表現し、それらをニューラルネットワークにエンコードする。
論文 参考訳(メタデータ) (2022-12-31T05:43:21Z) - A scan-specific unsupervised method for parallel MRI reconstruction via
implicit neural representation [9.388253054229155]
暗黙的神経表現(INR)は、物体の内部連続性を学ぶための新しいディープラーニングパラダイムとして登場した。
提案手法は,アーティファクトやノイズのエイリアスを抑えることにより,既存の手法よりも優れる。
良質な結果と走査特異性により,提案手法は並列MRIのデータ取得をさらに加速させる可能性を秘めている。
論文 参考訳(メタデータ) (2022-10-19T10:16:03Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - Robust Compressed Sensing MRI with Deep Generative Priors [84.69062247243953]
臨床MRIデータに対するCSGMフレームワークの初成功例を示す。
我々は、高速MRIデータセットから脳スキャンに先立って生成をトレーニングし、Langevin dynamicsによる後部サンプリングが高品質な再構成を実現することを示す。
論文 参考訳(メタデータ) (2021-08-03T08:52:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。