論文の概要: Dimension-free Private Mean Estimation for Anisotropic Distributions
- arxiv url: http://arxiv.org/abs/2411.00775v1
- Date: Fri, 01 Nov 2024 17:59:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:44:13.348495
- Title: Dimension-free Private Mean Estimation for Anisotropic Distributions
- Title(参考訳): 異方性分布の次元自由な私平均推定
- Authors: Yuval Dagan, Michael I. Jordan, Xuelin Yang, Lydia Zakynthinou, Nikita Zhivotovskiy,
- Abstract要約: 以前の$mathRd上の分布に関する民間推定者は、次元性の呪いに苦しむ。
本稿では,サンプルの複雑さが次元依存性を改善したアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 55.86374912608193
- License:
- Abstract: We present differentially private algorithms for high-dimensional mean estimation. Previous private estimators on distributions over $\mathbb{R}^d$ suffer from a curse of dimensionality, as they require $\Omega(d^{1/2})$ samples to achieve non-trivial error, even in cases where $O(1)$ samples suffice without privacy. This rate is unavoidable when the distribution is isotropic, namely, when the covariance is a multiple of the identity matrix, or when accuracy is measured with respect to the affine-invariant Mahalanobis distance. Yet, real-world data is often highly anisotropic, with signals concentrated on a small number of principal components. We develop estimators that are appropriate for such signals$\unicode{x2013}$our estimators are $(\varepsilon,\delta)$-differentially private and have sample complexity that is dimension-independent for anisotropic subgaussian distributions. Given $n$ samples from a distribution with known covariance-proxy $\Sigma$ and unknown mean $\mu$, we present an estimator $\hat{\mu}$ that achieves error $\|\hat{\mu}-\mu\|_2\leq \alpha$, as long as $n\gtrsim\mathrm{tr}(\Sigma)/\alpha^2+ \mathrm{tr}(\Sigma^{1/2})/(\alpha\varepsilon)$. In particular, when $\pmb{\sigma}^2=(\sigma_1^2, \ldots, \sigma_d^2)$ are the singular values of $\Sigma$, we have $\mathrm{tr}(\Sigma)=\|\pmb{\sigma}\|_2^2$ and $\mathrm{tr}(\Sigma^{1/2})=\|\pmb{\sigma}\|_1$, and hence our bound avoids dimension-dependence when the signal is concentrated in a few principal components. We show that this is the optimal sample complexity for this task up to logarithmic factors. Moreover, for the case of unknown covariance, we present an algorithm whose sample complexity has improved dependence on the dimension, from $d^{1/2}$ to $d^{1/4}$.
- Abstract(参考訳): 本稿では,高次元平均推定のための微分プライベートアルゴリズムを提案する。
以前の$\mathbb{R}^d$上の分布に関するプライベートな推定者は、プライバシーのないサンプルが十分である場合でも、非自明なエラーを達成するために$\Omega(d^{1/2})$サンプルを必要とするため、次元性の呪いに苦しむ。
この速度は、分布が等方性であるとき、すなわち共分散が恒等行列の倍数であるとき、またはアフィン不変のマハラノビス距離に関して精度が測定されるとき、避けられない。
しかし、現実世界のデータはしばしば非常に異方性があり、信号は少数の主成分に集中している。
そのような信号に適する推定器を開発する:$\unicode{x2013}$our estimators is $(\varepsilon,\delta)$-differentially private and have sample complexity that is dimension-independent for anisotropic subgaussian distributions。
既知の共分散-プロキシ$\Sigma$と未知の平均$\mu$の分布から$n$のサンプルが与えられたとき、誤差$\|\hat{\mu}-\mu\|_2\leq \alpha$を$n\gtrsim\mathrm{tr}(\Sigma)/\alpha^2+ \mathrm{tr}(\Sigma^{1/2})/(\alpha\varepsilon)$とすると、誤差は$\|\hat{\mu}-\mu\|_2\leq \alpha$となる。
特に、$\pmb{\sigma}^2=(\sigma_1^2, \ldots, \sigma_d^2)$が$\Sigma$の特異値であるとき、$\mathrm{tr}(\Sigma)=\|\pmb{\sigma}\|_2^2$および$\mathrm{tr}(\Sigma^{1/2})=\|\pmb{\sigma}\|_1$となる。
本研究は,この課題を対数的要因にまとめる上で,この課題が最適サンプルの複雑性であることを示す。
さらに、未知の共分散の場合、d^{1/2}$から$d^{1/4}$まで、サンプルの複雑さが次元への依存を改善したアルゴリズムを示す。
関連論文リスト
- Measuring quantum relative entropy with finite-size effect [53.64687146666141]
相対エントロピー$D(rho|sigma)$を$sigma$が知られているときに推定する。
我々の推定器は次元$d$が固定されたときにCram'er-Rao型境界に達する。
論文 参考訳(メタデータ) (2024-06-25T06:07:20Z) - Effective Minkowski Dimension of Deep Nonparametric Regression: Function
Approximation and Statistical Theories [70.90012822736988]
ディープ非パラメトリック回帰に関する既存の理論は、入力データが低次元多様体上にある場合、ディープニューラルネットワークは本質的なデータ構造に適応できることを示した。
本稿では,$mathcalS$で表される$mathbbRd$のサブセットに入力データが集中するという緩和された仮定を導入する。
論文 参考訳(メタデータ) (2023-06-26T17:13:31Z) - Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance
Estimation for Subgaussian Distributions [8.40077201352607]
我々は,高次元共分散認識平均推定のための高速,微分プライベートなアルゴリズムを提案する。
我々のアルゴリズムは$tildemu$を生成し、$|mu|_Sigma leq alpha$が$n gtrsim tfrac d alpha2 + tfracd sqrtlog 1/deltaalpha varepsilon+fracdlog 1/deltavarepsilon$である。
論文 参考訳(メタデータ) (2023-01-28T16:57:46Z) - Statistically Optimal Robust Mean and Covariance Estimation for
Anisotropic Gaussians [3.5788754401889014]
強い$varepsilon$-contaminationモデルでは、元のガウスサンプルのベクトルの$varepsilon$分を他のベクトルに置き換えたと仮定する。
我々は、少なくとも1-デルタの確率で満足するコフラ行列 $Sigma の推定器 $widehat Sigma を構築する。
論文 参考訳(メタデータ) (2023-01-21T23:28:55Z) - A Fast Algorithm for Adaptive Private Mean Estimation [5.090363690988394]
我々は、$Sigma$に適応する$(varepsilon, delta)$-differentially privateアルゴリズムを設計する。
推定子は、誘導されたマハラノビスノルム $|cdot||_Sigma$ に対して最適な収束率を達成する。
論文 参考訳(メタデータ) (2023-01-17T18:44:41Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
我々は、$bf K$ の固有スペクトルが$bf w$ の i.d. 成分の分布とは独立であることを示す。
3次ランダム特徴(TRF)と呼ばれる新しいランダム手法を提案する。
提案したランダムな特徴の計算には乗算が不要であり、古典的なランダムな特徴に比べてストレージに$b$のコストがかかる。
論文 参考訳(メタデータ) (2021-10-05T09:33:49Z) - Nonasymptotic one-and two-sample tests in high dimension with unknown
covariance structure [0.0]
テストの問題は、$mu が 0 に対して $eta-閉である場合、すなわち $|mu| geq (eta + delta)$ に対して $|mu| leq eta である。
本研究の目的は,I型とII型の両方の誤差を所定のレベルで制御できるように,最小分離距離$の漸近的上下境界を求めることである。
論文 参考訳(メタデータ) (2021-09-01T06:22:53Z) - The Sample Complexity of Robust Covariance Testing [56.98280399449707]
i. i. d.
形式 $Z = (1-epsilon) X + epsilon B$ の分布からのサンプル。ここで $X$ はゼロ平均で未知の共分散である Gaussian $mathcalN(0, Sigma)$ である。
汚染がない場合、事前の研究は、$O(d)$サンプルを使用するこの仮説テストタスクの単純なテスターを与えた。
サンプル複雑性の上限が $omega(d2)$ for $epsilon$ an arbitrarily small constant and $gamma であることを証明します。
論文 参考訳(メタデータ) (2020-12-31T18:24:41Z) - Estimation of Shortest Path Covariance Matrices [21.772761365915176]
共分散行列 $mathbfSigma in mathbbRdtimes d$ of a distribution $mathcal D$ over $mathbbRd$ given independent sample。
単に$O(sqrtD)$エントリ複雑性と$tilde O(r)を使って、標準エラーまで$mathbfSigma$を推定するための非常に単純なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-11-19T17:37:46Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
期待される正方形損失から、最も適合した単一ニューロンを学習することの問題点を考察する。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
論文 参考訳(メタデータ) (2020-05-29T07:20:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。