Personality Analysis from Online Short Video Platforms with Multi-domain Adaptation
- URL: http://arxiv.org/abs/2411.00813v1
- Date: Sat, 26 Oct 2024 03:29:32 GMT
- Title: Personality Analysis from Online Short Video Platforms with Multi-domain Adaptation
- Authors: Sixu An, Xiangguo Sun, Yicong Li, Yu Yang, Guandong Xu,
- Abstract summary: Personality analysis from online short videos has gained prominence due to its applications in personalized recommendation systems, sentiment analysis, and human-computer interaction.
Traditional assessment methods, such as questionnaires based on the Big Five Personality Framework, are limited by self-report biases and are impractical for large-scale or real-time analysis.
We propose a novel multi-modal personality analysis framework that addresses challenges by synchronizing and integrating features from multiple modalities.
- Score: 16.555668668581237
- License:
- Abstract: Personality analysis from online short videos has gained prominence due to its applications in personalized recommendation systems, sentiment analysis, and human-computer interaction. Traditional assessment methods, such as questionnaires based on the Big Five Personality Framework, are limited by self-report biases and are impractical for large-scale or real-time analysis. Leveraging the rich, multi-modal data present in short videos offers a promising alternative for more accurate personality inference. However, integrating these diverse and asynchronous modalities poses significant challenges, particularly in aligning time-varying data and ensuring models generalize well to new domains with limited labeled data. In this paper, we propose a novel multi-modal personality analysis framework that addresses these challenges by synchronizing and integrating features from multiple modalities and enhancing model generalization through domain adaptation. We introduce a timestamp-based modality alignment mechanism that synchronizes data based on spoken word timestamps, ensuring accurate correspondence across modalities and facilitating effective feature integration. To capture temporal dependencies and inter-modal interactions, we employ Bidirectional Long Short-Term Memory networks and self-attention mechanisms, allowing the model to focus on the most informative features for personality prediction. Furthermore, we develop a gradient-based domain adaptation method that transfers knowledge from multiple source domains to improve performance in target domains with scarce labeled data. Extensive experiments on real-world datasets demonstrate that our framework significantly outperforms existing methods in personality prediction tasks, highlighting its effectiveness in capturing complex behavioral cues and robustness in adapting to new domains.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning [0.0]
patio-temporal forecasting plays a crucial role in various sectors such as transportation systems, logistics, and supply chain management.
We introduce a hybrid approach that combines the strengths of open-source large and small-scale language models (LLMs and LMs) with traditional forecasting methods.
arXiv Detail & Related papers (2024-08-26T16:11:53Z) - DeepInteraction++: Multi-Modality Interaction for Autonomous Driving [80.8837864849534]
We introduce a novel modality interaction strategy that allows individual per-modality representations to be learned and maintained throughout.
DeepInteraction++ is a multi-modal interaction framework characterized by a multi-modal representational interaction encoder and a multi-modal predictive interaction decoder.
Experiments demonstrate the superior performance of the proposed framework on both 3D object detection and end-to-end autonomous driving tasks.
arXiv Detail & Related papers (2024-08-09T14:04:21Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.
We propose a novel approach to address this issue at test time without requiring retraining.
MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series
Forecasting [59.11817101030137]
This research advocates for a unified model paradigm that transcends domain boundaries.
Learning an effective cross-domain model presents the following challenges.
We propose UniTime for effective cross-domain time series learning.
arXiv Detail & Related papers (2023-10-15T06:30:22Z) - Modality-aware Transformer for Financial Time series Forecasting [3.401797102198429]
We introduce a novel multimodal transformer-based model named the textitModality-aware Transformer.
Our model excels in exploring the power of both categorical text and numerical timeseries to forecast the target time series effectively.
Our experiments on financial datasets demonstrate that Modality-aware Transformer outperforms existing methods.
arXiv Detail & Related papers (2023-10-02T14:22:41Z) - Learning Sequential Latent Variable Models from Multimodal Time Series
Data [6.107812768939553]
We present a self-supervised generative modelling framework to jointly learn a probabilistic latent state representation of multimodal data.
We demonstrate that our approach leads to significant improvements in prediction and representation quality.
arXiv Detail & Related papers (2022-04-21T21:59:24Z) - Dyadformer: A Multi-modal Transformer for Long-Range Modeling of Dyadic
Interactions [33.67477398036821]
We present Dyadformer, a novel multi-modal multi-subject Transformer architecture to model individual and interpersonal features in dyadic interactions.
Our proposed cross-subject layer allows the network to explicitly model interactions among subjects through attentional operations.
This proof-of-concept approach shows how multi-modality and joint modeling of both interactants for longer periods of time helps to predict individual attributes.
arXiv Detail & Related papers (2021-09-20T12:45:04Z) - Towards Handling Uncertainty-at-Source in AI -- A Review and Next Steps
for Interval Regression [6.166295570030645]
This paper focuses on linear regression for interval-valued data as a recent growth area.
We conduct an in-depth analysis of state-of-the-art methods, elucidating their behaviour, advantages, and pitfalls when applied to datasets with different properties.
arXiv Detail & Related papers (2021-04-15T05:31:10Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
We propose a multi-dataset feature generalization network (MMFA-AAE)
It is capable of learning a universal domain-invariant feature representation from multiple labeled datasets and generalizing it to unseen' camera systems.
It also surpasses many state-of-the-art supervised methods and unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2020-11-25T08:03:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.