Modality-aware Transformer for Financial Time series Forecasting
- URL: http://arxiv.org/abs/2310.01232v2
- Date: Wed, 20 Mar 2024 21:48:05 GMT
- Title: Modality-aware Transformer for Financial Time series Forecasting
- Authors: Hajar Emami, Xuan-Hong Dang, Yousaf Shah, Petros Zerfos,
- Abstract summary: We introduce a novel multimodal transformer-based model named the textitModality-aware Transformer.
Our model excels in exploring the power of both categorical text and numerical timeseries to forecast the target time series effectively.
Our experiments on financial datasets demonstrate that Modality-aware Transformer outperforms existing methods.
- Score: 3.401797102198429
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting presents a significant challenge, particularly when its accuracy relies on external data sources rather than solely on historical values. This issue is prevalent in the financial sector, where the future behavior of time series is often intricately linked to information derived from various textual reports and a multitude of economic indicators. In practice, the key challenge lies in constructing a reliable time series forecasting model capable of harnessing data from diverse sources and extracting valuable insights to predict the target time series accurately. In this work, we tackle this challenging problem and introduce a novel multimodal transformer-based model named the \textit{Modality-aware Transformer}. Our model excels in exploring the power of both categorical text and numerical timeseries to forecast the target time series effectively while providing insights through its neural attention mechanism. To achieve this, we develop feature-level attention layers that encourage the model to focus on the most relevant features within each data modality. By incorporating the proposed feature-level attention, we develop a novel Intra-modal multi-head attention (MHA), Inter-modal MHA and Target-modal MHA in a way that both feature and temporal attentions are incorporated in MHAs. This enables the MHAs to generate temporal attentions with consideration of modality and feature importance which leads to more informative embeddings. The proposed modality-aware structure enables the model to effectively exploit information within each modality as well as foster cross-modal understanding. Our extensive experiments on financial datasets demonstrate that Modality-aware Transformer outperforms existing methods, offering a novel and practical solution to the complex challenges of multi-modal financial time series forecasting.
Related papers
- TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAP is a time-series processing framework that creatively employs Large Language Models (LLMs) as contextualizers of time series data.
TimeCAP incorporates two independent LLM agents: one generates a textual summary capturing the context of the time series, while the other uses this enriched summary to make more informed predictions.
Experimental results on real-world datasets demonstrate that TimeCAP outperforms state-of-the-art methods for time series event prediction.
arXiv Detail & Related papers (2025-02-17T04:17:27Z) - General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
We show that time series with different time granularities (or corresponding frequency resolutions) exhibit distinct joint distributions in the frequency domain.
A novel Fourier knowledge attention mechanism is proposed to enable learning time-aware representations from both the temporal and frequency domains.
An autoregressive blank infilling pre-training framework is incorporated to time series analysis for the first time, leading to a generative tasks agnostic pre-training strategy.
arXiv Detail & Related papers (2025-02-05T15:20:04Z) - Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning [0.0]
patio-temporal forecasting plays a crucial role in various sectors such as transportation systems, logistics, and supply chain management.
We introduce a hybrid approach that combines the strengths of open-source large and small-scale language models (LLMs and LMs) with traditional forecasting methods.
arXiv Detail & Related papers (2024-08-26T16:11:53Z) - Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture [0.8532753451809455]
This study presents a groundbreaking model for forecasting long-term financial time series, termed the Enhanced LFTSformer.
The model distinguishes itself through several significant innovations.
Systematic experimentation on a range of benchmark stock market datasets demonstrates that the Enhanced LFTSformer outperforms traditional machine learning models.
arXiv Detail & Related papers (2023-10-03T08:37:21Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - Ti-MAE: Self-Supervised Masked Time Series Autoencoders [16.98069693152999]
We propose a novel framework named Ti-MAE, in which the input time series are assumed to follow an integrate distribution.
Ti-MAE randomly masks out embedded time series data and learns an autoencoder to reconstruct them at the point-level.
Experiments on several public real-world datasets demonstrate that our framework of masked autoencoding could learn strong representations directly from the raw data.
arXiv Detail & Related papers (2023-01-21T03:20:23Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Multi-head Temporal Attention-Augmented Bilinear Network for Financial
time series prediction [77.57991021445959]
We propose a neural layer based on the ideas of temporal attention and multi-head attention to extend the capability of the underlying neural network.
The effectiveness of our approach is validated using large-scale limit-order book market data.
arXiv Detail & Related papers (2022-01-14T14:02:19Z) - Spatiotemporal Attention for Multivariate Time Series Prediction and
Interpretation [17.568599402858037]
temporal attention mechanism (STAM) for simultaneous learning of the most important time steps and variables.
Results: STAM maintains state-of-the-art prediction accuracy while offering the benefit of accurate interpretability.
arXiv Detail & Related papers (2020-08-11T17:34:55Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.