Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning
- URL: http://arxiv.org/abs/2408.14387v1
- Date: Mon, 26 Aug 2024 16:11:53 GMT
- Title: Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning
- Authors: Sakhinana Sagar Srinivas, Chidaksh Ravuru, Geethan Sannidhi, Venkataramana Runkana,
- Abstract summary: patio-temporal forecasting plays a crucial role in various sectors such as transportation systems, logistics, and supply chain management.
We introduce a hybrid approach that combines the strengths of open-source large and small-scale language models (LLMs and LMs) with traditional forecasting methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Spatio-temporal forecasting plays a crucial role in various sectors such as transportation systems, logistics, and supply chain management. However, existing methods are limited by their ability to handle large, complex datasets. To overcome this limitation, we introduce a hybrid approach that combines the strengths of open-source large and small-scale language models (LLMs and LMs) with traditional forecasting methods. We augment traditional methods with dynamic prompting and a grouped-query, multi-head attention mechanism to more effectively capture both intra-series and inter-series dependencies in evolving nonlinear time series data. In addition, we facilitate on-premises customization by fine-tuning smaller open-source LMs for time series trend analysis utilizing descriptions generated by open-source large LMs on consumer-grade hardware using Low-Rank Adaptation with Activation Memory Reduction (LoRA-AMR) technique to reduce computational overhead and activation storage memory demands while preserving inference latency. We combine language model processing for time series trend analysis with traditional time series representation learning method for cross-modal integration, achieving robust and accurate forecasts. The framework effectiveness is demonstrated through extensive experiments on various real-world datasets, outperforming existing methods by significant margins in terms of forecast accuracy.
Related papers
- Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
We propose to leverage Large Language Models (LLMs) as a lightweight alternative for model selection.
Our method eliminates the need for explicit performance matrices by utilizing the inherent knowledge and reasoning capabilities of LLMs.
arXiv Detail & Related papers (2025-04-02T20:33:27Z) - PLM: Efficient Peripheral Language Models Hardware-Co-Designed for Ubiquitous Computing [48.30406812516552]
We introduce the PLM, a Peripheral Language Model, developed through a co-design process that jointly optimize model architecture and edge system constraints.
PLM employs a Multi-head Latent Attention mechanism and employs the squared ReLU activation function to encourage sparsity, thereby reducing peak memory footprint.
evaluation results demonstrate that PLM outperforms existing small language models trained on publicly available data.
arXiv Detail & Related papers (2025-03-15T15:11:17Z) - Federated Dynamic Modeling and Learning for Spatiotemporal Data Forecasting [0.8568432695376288]
This paper presents an advanced Federated Learning (FL) framework for forecasting complextemporal data, improving upon recent state-of-the-art models.
The resulting architecture significantly improves the model's capacity to handle complex temporal patterns in diverse forecasting applications.
The efficiency of our approach is demonstrated through extensive experiments on real-world applications, including public datasets for multimodal transport demand forecasting and private datasets for Origin-Destination (OD) matrix forecasting in urban areas.
arXiv Detail & Related papers (2025-03-06T15:16:57Z) - FlowScope: Enhancing Decision Making by Time Series Forecasting based on Prediction Optimization using HybridFlow Forecast Framework [0.0]
Time series forecasting is crucial in several sectors, such as meteorology, retail, healthcare, and finance.
We propose FlowScope which offers a versatile and robust platform for predicting time series data.
This empowers enterprises to make informed decisions and optimize long-term strategies for maximum performance.
arXiv Detail & Related papers (2024-11-16T06:25:30Z) - A Distribution-Aware Flow-Matching for Generating Unstructured Data for Few-Shot Reinforcement Learning [1.0709300917082865]
We introduce a distribution-aware flow matching, designed to generate synthetic unstructured data tailored for few-shot reinforcement learning (RL) on embedded processors.
We apply feature weighting through Random Forests to prioritize critical data aspects, thereby improving the precision of the generated synthetic data.
Our method provides a stable convergence based on max Q-value while enhancing frame rate by 30% in the very beginning first timestamps.
arXiv Detail & Related papers (2024-09-21T15:50:59Z) - Advancing Enterprise Spatio-Temporal Forecasting Applications: Data Mining Meets Instruction Tuning of Language Models For Multi-modal Time Series Analysis in Low-Resource Settings [0.0]
patio-temporal forecasting is crucial in transportation, logistics, and supply chain management.
We propose a dynamic, multi-modal approach that integrates the strengths of traditional forecasting methods and instruction tuning of small language models.
Our framework enables on-premises customization with reduced computational and memory demands, while maintaining inference speed and data privacy/security.
arXiv Detail & Related papers (2024-08-24T16:32:58Z) - A federated large language model for long-term time series forecasting [4.696083734269233]
We propose FedTime, a federated large language model (LLM) tailored for long-range time series prediction.
We employ K-means clustering to partition edge devices or clients into distinct clusters.
We also incorporate channel independence and patching to better preserve local semantic information.
arXiv Detail & Related papers (2024-07-30T02:38:27Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.
By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.
Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - Perceiver-based CDF Modeling for Time Series Forecasting [25.26713741799865]
We propose a new architecture, called perceiver-CDF, for modeling cumulative distribution functions (CDF) of time series data.
Our approach combines the perceiver architecture with a copula-based attention mechanism tailored for multimodal time series prediction.
Experiments on the unimodal and multimodal benchmarks consistently demonstrate a 20% improvement over state-of-the-art methods.
arXiv Detail & Related papers (2023-10-03T01:13:17Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS)
We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks.
arXiv Detail & Related papers (2023-10-02T16:45:19Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.