論文の概要: Deep Learning for 3D Point Cloud Enhancement: A Survey
- arxiv url: http://arxiv.org/abs/2411.00857v1
- Date: Wed, 30 Oct 2024 15:07:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:28:19.034641
- Title: Deep Learning for 3D Point Cloud Enhancement: A Survey
- Title(参考訳): 3Dポイントクラウド強化のためのディープラーニング: サーベイ
- Authors: Siwen Quan, Junhao Yu, Ziming Nie, Muze Wang, Sijia Feng, Pei An, Jiaqi Yang,
- Abstract要約: 本稿では,深層学習に基づくポイントクラウド強化手法に関する総合的な調査を行う。
ポイントクラウドの強化、すなわちクリーンなデータを達成するためのデノイング、見えないデータを復元するための完了、高密度なデータを得るためのアップサンプリングの3つの主要な視点をカバーしている。
本調査では,最近の最先端手法の新しい分類法と,標準ベンチマークの体系的実験結果について述べる。
- 参考スコア(独自算出の注目度): 7.482216242644069
- License:
- Abstract: Point cloud data now are popular data representations in a number of three-dimensional (3D) vision research realms. However, due to the limited performance of sensors and sensing noise, the raw data usually suffer from sparsity, noise, and incompleteness. This poses great challenges to down-stream point cloud processing tasks. In recent years, deep-learning-based point cloud enhancement methods, which aim to achieve dense, clean, and complete point clouds from low-quality raw point clouds using deep neural networks, are gaining tremendous research attention. This paper, for the first time to our knowledge, presents a comprehensive survey for deep-learning-based point cloud enhancement methods. It covers three main perspectives for point cloud enhancement, i.e., (1) denoising to achieve clean data; (2) completion to recover unseen data; (3) upsampling to obtain dense data. Our survey presents a new taxonomy for recent state-of-the-art methods and systematic experimental results on standard benchmarks. In addition, we share our insightful observations, thoughts, and inspiring future research directions for point cloud enhancement with deep learning.
- Abstract(参考訳): 現在、ポイントクラウドデータは、多くの3次元(3D)視覚研究領域における一般的なデータ表現である。
しかし、センサの性能やノイズが限られているため、生データは通常、空間性、ノイズ、不完全性に悩まされる。
これは、ダウンストリームのクラウド処理タスクに大きな課題をもたらします。
近年,深層ニューラルネットワークを用いた低品質の原点雲から高密度でクリーンで完全な点雲を実現するディープラーニングベースの点雲拡張手法が注目されている。
本稿では,私たちの知る限り初めて,ディープラーニングに基づくポイントクラウド強化手法に関する総合的な調査を行う。
点雲の強化のための3つの主要な視点、すなわち(1)クリーンなデータを達成するためのデノイング、(2)見えないデータを回復するための完了、(3)高密度なデータを得るためのアップサンプリングをカバーしている。
本調査では,最近の最先端手法の新しい分類法と,標準ベンチマークの体系的実験結果について述べる。
さらに、私たちの洞察に富んだ観察、思考、そして深層学習によるポイントクラウドの強化に向けた今後の研究の方向性を共有します。
関連論文リスト
- PointRegGPT: Boosting 3D Point Cloud Registration using Generative Point-Cloud Pairs for Training [90.06520673092702]
生成点クラウドペアを用いた3Dポイントクラウドの登録をトレーニングのために促進するPointRegGPTを提案する。
我々の知る限り、これは屋内のクラウド登録のためのリアルなデータ生成を探求する最初の生成的アプローチである。
論文 参考訳(メタデータ) (2024-07-19T06:29:57Z) - Test-Time Augmentation for 3D Point Cloud Classification and
Segmentation [40.62640761825697]
データ拡張は、ディープラーニングタスクのパフォーマンスを向上させるための強力なテクニックである。
本研究は,3次元点雲に対するTTA(Test-time augmentation)について検討する。
論文 参考訳(メタデータ) (2023-11-22T04:31:09Z) - Deep Learning-based 3D Point Cloud Classification: A Systematic Survey
and Outlook [12.014972829130764]
本稿では,ポイントクラウドの獲得,特徴,課題を紹介する。
我々は3Dデータ表現、ストレージフォーマット、およびポイントクラウド分類のための一般的に使用されるデータセットについてレビューする。
論文 参考訳(メタデータ) (2023-11-05T09:28:43Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
本稿では,点雲のラベル効率学習に関する包括的調査を行う。
本稿では,ラベルの種類によって提供されるデータ前提条件に基づいて,ラベル効率のよい学習手法を整理する分類法を提案する。
それぞれのアプローチについて、問題設定の概要と、関連する進展と課題を示す広範な文献レビューを提供する。
論文 参考訳(メタデータ) (2023-05-31T12:54:51Z) - Point2Vec for Self-Supervised Representation Learning on Point Clouds [66.53955515020053]
Data2vecをポイントクラウド領域に拡張し、いくつかのダウンストリームタスクで推奨される結果を報告します。
我々は、ポイントクラウド上でData2vecライクな事前トレーニングの可能性を解放するpoint2vecを提案する。
論文 参考訳(メタデータ) (2023-03-29T10:08:29Z) - Sequential Point Clouds: A Survey [33.20866441256135]
本稿では,シーケンシャルポイントクラウド研究のための深層学習に基づく手法について概説する。
これには、動的フロー推定、オブジェクトの検出とトラッキング、ポイントクラウドセグメンテーション、ポイントクラウド予測が含まれる。
論文 参考訳(メタデータ) (2022-04-20T09:14:20Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
大規模クラウドラベリングの制約により,教師なしのポイントクラウド表現学習が注目されている。
本稿では、ディープニューラルネットワークを用いた教師なしポイントクラウド表現学習の総合的なレビューを提供する。
論文 参考訳(メタデータ) (2022-02-28T07:46:05Z) - Review: deep learning on 3D point clouds [9.73176900969663]
ポイントクラウドは3D表現のための最も重要なデータフォーマットの1つである。
ディープラーニングは現在、コンピュータビジョンにおけるデータ処理の最も強力なツールです。
論文 参考訳(メタデータ) (2020-01-17T12:55:23Z) - Deep Learning for 3D Point Clouds: A Survey [58.954684611055]
本稿では,ポイントクラウドにおけるディープラーニング手法の最近の進歩を概観する。
3D形状分類、3Dオブジェクトの検出と追跡、3Dポイントクラウドセグメンテーションを含む3つの主要なタスクをカバーしている。
また、いくつかの公開データセットで比較結果を提示する。
論文 参考訳(メタデータ) (2019-12-27T09:15:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。