論文の概要: Advancing Crime Linkage Analysis with Machine Learning: A Comprehensive Review and Framework for Data-Driven Approaches
- arxiv url: http://arxiv.org/abs/2411.00864v1
- Date: Wed, 30 Oct 2024 18:22:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:51:51.335121
- Title: Advancing Crime Linkage Analysis with Machine Learning: A Comprehensive Review and Framework for Data-Driven Approaches
- Title(参考訳): 機械学習による犯罪リンク分析の促進: データ駆動アプローチの総合的レビューとフレームワーク
- Authors: Vinicius Lima, Umit Karabiyik,
- Abstract要約: 犯罪リンケージ(英: Crime linkage)とは、犯罪行為データを分析して、一対または一対の犯罪事件が一連の犯罪に関係しているかどうかを判断する過程である。
本研究の目的は,犯罪リンクにおける機械学習アプローチが直面する課題を理解し,将来的なデータ駆動手法の基盤知識を支援することである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Crime linkage is the process of analyzing criminal behavior data to determine whether a pair or group of crime cases are connected or belong to a series of offenses. This domain has been extensively studied by researchers in sociology, psychology, and statistics. More recently, it has drawn interest from computer scientists, especially with advances in artificial intelligence. Despite this, the literature indicates that work in this latter discipline is still in its early stages. This study aims to understand the challenges faced by machine learning approaches in crime linkage and to support foundational knowledge for future data-driven methods. To achieve this goal, we conducted a comprehensive survey of the main literature on the topic and developed a general framework for crime linkage processes, thoroughly describing each step. Our goal was to unify insights from diverse fields into a shared terminology to enhance the research landscape for those intrigued by this subject.
- Abstract(参考訳): 犯罪リンケージ(英: Crime linkage)とは、犯罪行為データを分析して、一対または一対の犯罪事件が一連の犯罪に関係しているかどうかを判断する過程である。
この領域は社会学、心理学、統計学の研究者によって広く研究されている。
最近では、コンピューター科学者、特に人工知能の進歩から関心を集めている。
それにもかかわらず、文献は後者の分野における研究がまだ初期段階にあることを示唆している。
本研究の目的は,犯罪リンクにおける機械学習アプローチが直面する課題を理解し,将来的なデータ駆動手法の基盤知識を支援することである。
この目的を達成するため,本研究の主要文献を包括的に調査し,各ステップを網羅的に記述した,犯罪リンクプロセスの一般的な枠組みを開発した。
本研究の目的は,多様な分野の知見を共通用語に統一し,研究の展望を高めることであった。
関連論文リスト
- Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - A Comprehensive Analysis of the Role of Artificial Intelligence and
Machine Learning in Modern Digital Forensics and Incident Response [0.0]
目標は、デジタル法医学とインシデント対応において、AIとMLのテクニックがどのように使われているか、詳しく調べることである。
この取り組みは、AI駆動の方法論がこれらの重要なデジタル法医学の実践を形作っている複雑な方法を明らかにするために、表面のずっと下を掘り下げる。
最終的に、この論文は、デジタル法医学におけるAIとMLの統合の重要性を強調し、現代のサイバー脅威に取り組む上での、彼らのメリット、欠点、より広範な意味についての洞察を提供する。
論文 参考訳(メタデータ) (2023-09-13T16:23:53Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Crime Prediction Using Machine Learning and Deep Learning: A Systematic
Review and Future Directions [2.624902795082451]
本稿では,犯罪予測に応用された各種機械学習および深層学習アルゴリズムについて,150以上の論文について検討する。
この研究は、研究者による犯罪予測に使われるデータセットへのアクセスを提供する。
本稿では,犯罪予測の精度を高めるための潜在的なギャップと今後の方向性を明らかにする。
論文 参考訳(メタデータ) (2023-03-28T21:07:42Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Profiling the Cybercriminal: A Systematic Review of Research [2.66512000865131]
サイバー犯罪者のプロファイリングに関する一般的な定義がない。
サイバー犯罪の主なタイプの1つはハッカーだ。
この記事では、その分野の最新の特徴化について述べる。
論文 参考訳(メタデータ) (2021-05-06T19:56:55Z) - Visilant: Visual Support for the Exploration and Analytical Process
Tracking in Criminal Investigations [1.8594711725515676]
Visilantは、提案した設計によってガイドされた犯罪データの探索と分析のためのWebベースのツールである。
このツールは2つのセッションで上級犯罪学の専門家によって評価され、そのフィードバックは論文にまとめられている。
論文 参考訳(メタデータ) (2020-09-21T09:24:20Z) - Extracting Entities and Topics from News and Connecting Criminal Records [6.685013315842082]
本稿では,犯罪記録データベースや新聞データベースからエンティティやトピックを抽出する手法を要約する。
統計モデルは、約30,000のニューヨーク・タイムズの記事のトピックの研究に成功している。
分析的アプローチ、特にホットスポットマッピングは、将来犯罪の場所や状況を予測するためにいくつかの研究で使用された。
論文 参考訳(メタデータ) (2020-05-03T00:06:01Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。