VecCity: A Taxonomy-guided Library for Map Entity Representation Learning
- URL: http://arxiv.org/abs/2411.00874v1
- Date: Thu, 31 Oct 2024 07:03:46 GMT
- Title: VecCity: A Taxonomy-guided Library for Map Entity Representation Learning
- Authors: Wentao Zhang, Jingyuan Wang, Yifan Yang, Leong Hou U,
- Abstract summary: Map entity representation learning (MapRL) generates versatile and reusable data representations.
We propose a novel taxonomy for MapRL that organizes models based on functional module-such as encoders, pre-training tasks, and downstream tasks.
We present a taxonomy-driven library, VecCity, which offers easy-to-use interfaces for encoding, pre-training, fine-tuning, and evaluation.
- Score: 48.73446321300362
- License:
- Abstract: Electronic maps consist of diverse entities, such as points of interest (POIs), road networks, and land parcels, playing a vital role in applications like ITS and LBS. Map entity representation learning (MapRL) generates versatile and reusable data representations, providing essential tools for efficiently managing and utilizing map entity data. Despite the progress in MapRL, two key challenges constrain further development. First, existing research is fragmented, with models classified by the type of map entity, limiting the reusability of techniques across different tasks. Second, the lack of unified benchmarks makes systematic evaluation and comparison of models difficult. To address these challenges, we propose a novel taxonomy for MapRL that organizes models based on functional module-such as encoders, pre-training tasks, and downstream tasks-rather than by entity type. Building on this taxonomy, we present a taxonomy-driven library, VecCity, which offers easy-to-use interfaces for encoding, pre-training, fine-tuning, and evaluation. The library integrates datasets from nine cities and reproduces 21 mainstream MapRL models, establishing the first standardized benchmarks for the field. VecCity also allows users to modify and extend models through modular components, facilitating seamless experimentation. Our comprehensive experiments cover multiple types of map entities and evaluate 21 VecCity pre-built models across various downstream tasks. Experimental results demonstrate the effectiveness of VecCity in streamlining model development and provide insights into the impact of various components on performance. By promoting modular design and reusability, VecCity offers a unified framework to advance research and innovation in MapRL. The code is available at https://github.com/Bigscity-VecCity/VecCity.
Related papers
- BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
Large language models (LLMs) have become increasingly pivotal across various domains.
BabelBench is an innovative benchmark framework that evaluates the proficiency of LLMs in managing multimodal multistructured data with code execution.
Our experimental findings on BabelBench indicate that even cutting-edge models like ChatGPT 4 exhibit substantial room for improvement.
arXiv Detail & Related papers (2024-10-01T15:11:24Z) - Fine-Grained Building Function Recognition from Street-View Images via Geometry-Aware Semi-Supervised Learning [18.432786227782803]
We propose a geometry-aware semi-supervised framework for fine-grained building function recognition.
We use geometric relationships among multi-source data to enhance pseudo-label accuracy in semi-supervised learning.
Our proposed framework exhibits superior performance in fine-grained functional recognition of buildings.
arXiv Detail & Related papers (2024-08-18T12:48:48Z) - Leveraging Enhanced Queries of Point Sets for Vectorized Map Construction [15.324464723174533]
This paper introduces MapQR, an end-to-end method with an emphasis on enhancing query capabilities for constructing online vectorized maps.
MapQR utilizes a novel query design, called scatter-and-gather query, which is modelled by separate content and position parts explicitly.
The proposed MapQR achieves the best mean average precision (mAP) and maintains good efficiency on both nuScenes and Argoverse 2.
arXiv Detail & Related papers (2024-02-27T11:43:09Z) - Jointly Learning Representations for Map Entities via Heterogeneous
Graph Contrastive Learning [38.415692986360995]
We propose a novel method named HOME-GCL for learning representations of multiple categories of map entities.
Our approach utilizes a heterogeneous map entity graph (HOME graph) that integrates both road segments and land parcels into a unified framework.
To the best of our knowledge, HOME-GCL is the first attempt to jointly learn representations for road segments and land parcels using a unified model.
arXiv Detail & Related papers (2024-02-09T01:47:18Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
Recent advances in machine learning have significantly impacted the field of information extraction.
We reformulate the task to be entity-centric, enabling the use of diverse metrics.
We contribute to the field by introducing Structured Entity Extraction and proposing the Approximate Entity Set OverlaP metric.
arXiv Detail & Related papers (2024-02-06T22:15:09Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - MapTRv2: An End-to-End Framework for Online Vectorized HD Map Construction [40.07726377230152]
High-definition (HD) map provides abundant and precise static environmental information of the driving scene.
We present textbfMap textbfTRansformer, an end-to-end framework for online vectorized HD map construction.
arXiv Detail & Related papers (2023-08-10T17:56:53Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - AutoRC: Improving BERT Based Relation Classification Models via
Architecture Search [50.349407334562045]
BERT based relation classification (RC) models have achieved significant improvements over the traditional deep learning models.
No consensus can be reached on what is the optimal architecture.
We design a comprehensive search space for BERT based RC models and employ neural architecture search (NAS) method to automatically discover the design choices.
arXiv Detail & Related papers (2020-09-22T16:55:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.