Retrieval-enriched zero-shot image classification in low-resource domains
- URL: http://arxiv.org/abs/2411.00988v1
- Date: Fri, 01 Nov 2024 19:24:55 GMT
- Title: Retrieval-enriched zero-shot image classification in low-resource domains
- Authors: Nicola Dall'Asen, Yiming Wang, Enrico Fini, Elisa Ricci,
- Abstract summary: Low-resource domains present significant challenges for language and visual understanding tasks.
Recent advancements in Vision-Language Models (VLM) have shown promising results in high-resource domains but fall short in low-resource concepts that are under-represented.
We tackle the challenging task of zero-shot low-resource image classification from a novel perspective.
- Score: 23.529317590033845
- License:
- Abstract: Low-resource domains, characterized by scarce data and annotations, present significant challenges for language and visual understanding tasks, with the latter much under-explored in the literature. Recent advancements in Vision-Language Models (VLM) have shown promising results in high-resource domains but fall short in low-resource concepts that are under-represented (e.g. only a handful of images per category) in the pre-training set. We tackle the challenging task of zero-shot low-resource image classification from a novel perspective. By leveraging a retrieval-based strategy, we achieve this in a training-free fashion. Specifically, our method, named CoRE (Combination of Retrieval Enrichment), enriches the representation of both query images and class prototypes by retrieving relevant textual information from large web-crawled databases. This retrieval-based enrichment significantly boosts classification performance by incorporating the broader contextual information relevant to the specific class. We validate our method on a newly established benchmark covering diverse low-resource domains, including medical imaging, rare plants, and circuits. Our experiments demonstrate that CORE outperforms existing state-of-the-art methods that rely on synthetic data generation and model fine-tuning.
Related papers
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - Contextuality Helps Representation Learning for Generalized Category Discovery [5.885208652383516]
This paper introduces a novel approach to Generalized Category Discovery (GCD) by leveraging the concept of contextuality.
Our model integrates two levels of contextuality: instance-level, where nearest-neighbor contexts are utilized for contrastive learning, and cluster-level, employing contrastive learning.
The integration of the contextual information effectively improves the feature learning and thereby the classification accuracy of all categories.
arXiv Detail & Related papers (2024-07-29T07:30:41Z) - Diversified in-domain synthesis with efficient fine-tuning for few-shot
classification [64.86872227580866]
Few-shot image classification aims to learn an image classifier using only a small set of labeled examples per class.
We propose DISEF, a novel approach which addresses the generalization challenge in few-shot learning using synthetic data.
We validate our method in ten different benchmarks, consistently outperforming baselines and establishing a new state-of-the-art for few-shot classification.
arXiv Detail & Related papers (2023-12-05T17:18:09Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Attribute Prototype Network for Any-Shot Learning [113.50220968583353]
We argue that an image representation with integrated attribute localization ability would be beneficial for any-shot, i.e. zero-shot and few-shot, image classification tasks.
We propose a novel representation learning framework that jointly learns global and local features using only class-level attributes.
arXiv Detail & Related papers (2022-04-04T02:25:40Z) - Generating More Pertinent Captions by Leveraging Semantics and Style on
Multi-Source Datasets [56.018551958004814]
This paper addresses the task of generating fluent descriptions by training on a non-uniform combination of data sources.
Large-scale datasets with noisy image-text pairs provide a sub-optimal source of supervision.
We propose to leverage and separate semantics and descriptive style through the incorporation of a style token and keywords extracted through a retrieval component.
arXiv Detail & Related papers (2021-11-24T19:00:05Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Complementing Representation Deficiency in Few-shot Image
Classification: A Meta-Learning Approach [27.350615059290348]
We propose a meta-learning approach with complemented representations network (MCRNet) for few-shot image classification.
In particular, we embed a latent space, where latent codes are reconstructed with extra representation information to complement the representation deficiency.
Our end-to-end framework achieves the state-of-the-art performance in image classification on three standard few-shot learning datasets.
arXiv Detail & Related papers (2020-07-21T13:25:54Z) - Looking back to lower-level information in few-shot learning [4.873362301533825]
We propose the utilization of lower-level, supporting information, namely the feature embeddings of the hidden neural network layers, to improve classification accuracy.
Our experiments on two popular few-shot learning datasets, miniImageNet and tieredImageNet, show that our method can utilize the lower-level information in the network to improve state-of-the-art classification performance.
arXiv Detail & Related papers (2020-05-27T20:32:13Z) - Weakly-supervised Object Localization for Few-shot Learning and
Fine-grained Few-shot Learning [0.5156484100374058]
Few-shot learning aims to learn novel visual categories from very few samples.
We propose a Self-Attention Based Complementary Module (SAC Module) to fulfill the weakly-supervised object localization.
We also produce the activated masks for selecting discriminative deep descriptors for few-shot classification.
arXiv Detail & Related papers (2020-03-02T14:07:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.