論文の概要: An unified approach to link prediction in collaboration networks
- arxiv url: http://arxiv.org/abs/2411.01066v1
- Date: Fri, 01 Nov 2024 22:40:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:38:20.764677
- Title: An unified approach to link prediction in collaboration networks
- Title(参考訳): 協調ネットワークにおけるリンク予測への統一的アプローチ
- Authors: Juan Sosa, Diego Martínez, Nicolás Guerrero,
- Abstract要約: 本稿では、協調ネットワークにおけるリンク予測の3つのアプローチについて検討し、比較する。
ERGMはネットワーク内の一般的な構造パターンをキャプチャするために使用される。
GCNとWord2Vec+MLPモデルはディープラーニング技術を利用してノードとその関係の適応的構造表現を学習する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This article investigates and compares three approaches to link prediction in colaboration networks, namely, an ERGM (Exponential Random Graph Model; Robins et al. 2007), a GCN (Graph Convolutional Network; Kipf and Welling 2017), and a Word2Vec+MLP model (Word2Vec model combined with a multilayer neural network; Mikolov et al. 2013a and Goodfellow et al. 2016). The ERGM, grounded in statistical methods, is employed to capture general structural patterns within the network, while the GCN and Word2Vec+MLP models leverage deep learning techniques to learn adaptive structural representations of nodes and their relationships. The predictive performance of the models is assessed through extensive simulation exercises using cross-validation, with metrics based on the receiver operating characteristic curve. The results clearly show the superiority of machine learning approaches in link prediction, particularly in large networks, where traditional models such as ERGM exhibit limitations in scalability and the ability to capture inherent complexities. These findings highlight the potential benefits of integrating statistical modeling techniques with deep learning methods to analyze complex networks, providing a more robust and effective framework for future research in this field.
- Abstract(参考訳): 本稿では、協調ネットワークにおける予測をリンクする3つのアプローチ、すなわち、ERGM(Exponential Random Graph Model; Robins et al 2007)、GCN(Graph Convolutional Network; Kipf and Welling 2017)、Word2Vec+MLPモデル(Word2Vecモデルと多層ニューラルネットワーク、Mikolov et al 2013a、Goodfellow et al 2016)を調査し比較する。
統計学的手法に基づくERGMはネットワーク内の一般的な構造パターンを捉えるのに使われ、GCNとWord2Vec+MLPモデルはディープラーニング技術を利用してノードとその関係の適応的構造表現を学習する。
モデルの予測性能は、クロスバリデーションを用いた広範囲なシミュレーション演習を通じて評価され、レシーバの動作特性曲線に基づいて測定される。
この結果は、特に大規模ネットワークにおいて、ERGMのような従来のモデルでは、スケーラビリティと固有の複雑さを捉える能力に限界があるような、リンク予測における機械学習アプローチの優位性を明確に示している。
これらの知見は、複雑なネットワークを解析する深層学習手法と統計的モデリング技術を統合することの潜在的な利点を浮き彫りにし、この分野での今後の研究のためのより堅牢で効果的なフレームワークを提供する。
関連論文リスト
- Analysing the Behaviour of Tree-Based Neural Networks in Regression Tasks [3.912345988363511]
本稿では、回帰課題の文脈において、木に基づくニューラルネットワークモデルの振る舞いを復号化するための取り組みを行う。
我々は,ツリーベースのCNN,Code2Vec,Transformerベースのメソッドといった確立されたモデルの応用を拡張し,ASTに解析することでソースコードの実行時間を予測する。
提案するデュアルトランスは,多様なデータセットにまたがる顕著な適応性とロバストな性能を示す。
論文 参考訳(メタデータ) (2024-06-17T11:47:14Z) - A parameterised model for link prediction using node centrality and
similarity measure based on graph embedding [5.507008181141738]
リンク予測は、グラフ機械学習の重要な側面である。
ネットワークノード間で形成される可能性のある新しいリンクを予測する必要がある。
既存のモデルには重大な欠点がある。
ノードの集中度と類似度をベースとしています。
Model (NCSM) - リンク予測タスクの新しい方法。
論文 参考訳(メタデータ) (2023-09-11T13:13:54Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
スパースリカバリのためのモデルベースネットワークの一般化能力は、通常のReLUネットワークよりも優れていることを示す。
我々は,高一般化を保証したモデルベースネットワークの構築を可能にする実用的な設計規則を導出する。
論文 参考訳(メタデータ) (2023-04-19T16:39:44Z) - CCasGNN: Collaborative Cascade Prediction Based on Graph Neural Networks [0.49269463638915806]
カスケード予測は,ネットワーク内の情報拡散をモデル化することを目的とした。
グラフニューラルネットワークとリカレントニューラルネットワークによるネットワーク構造とシーケンス特徴の組み合わせに関する研究
本稿では,個々のプロファイル,構造特徴,シーケンス情報を考慮した新しいCCasGNNを提案する。
論文 参考訳(メタデータ) (2021-12-07T11:37:36Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
本稿では,画素レベルの予測を基本的側面,すなわち,技術の現状を推し進める新たなアプローチを提案する。
構造化されたマルチスケール機能学習と融合。
本論文では,マルチスケール表現を原理的に学習・融合するための新しいアテンテンションゲート条件ランダムフィールド(AG-CRFs)モデルに基づく確率的グラフアテンションネットワーク構造を提案する。
論文 参考訳(メタデータ) (2021-01-08T04:14:29Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
本稿では,最先端の結果を生み出すスパイクニューラルネットワークのアンサンブルを構築する方法について述べる。
MNIST, NMNIST, DVS Gestureデータセットの分類精度は98.71%, 100.0%, 99.09%である。
我々は、スパイキングニューラルネットワークをGLM予測器として形式化し、ターゲットドメインに適した表現を識別する。
論文 参考訳(メタデータ) (2020-10-15T17:45:18Z) - Learning Queuing Networks by Recurrent Neural Networks [0.0]
データから性能モデルを導出する機械学習手法を提案する。
我々は、通常の微分方程式のコンパクトな系の観点から、それらの平均力学の決定論的近似を利用する。
これにより、ニューラルネットワークの解釈可能な構造が可能になり、システム測定からトレーニングしてホワイトボックスパラメータ化モデルを生成することができる。
論文 参考訳(メタデータ) (2020-02-25T10:56:47Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。