論文の概要: Effective ML Model Versioning in Edge Networks
- arxiv url: http://arxiv.org/abs/2411.01078v2
- Date: Tue, 12 Nov 2024 14:18:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:16:28.425863
- Title: Effective ML Model Versioning in Edge Networks
- Title(参考訳): エッジネットワークにおける効果的なMLモデルバージョニング
- Authors: Fin Gentzen, Mounir Bensalem, Admela Jukan,
- Abstract要約: 性能,応答時間,セキュリティ,信頼性に制約があることから,エッジネットワーク環境について検討する。
サーバの負荷値のあらゆる範囲において、セキュリティ、信頼性、および/またはMLモデルの正確性を改善する適切なバージョニングを見つけることができることを示す。
- 参考スコア(独自算出の注目度): 2.867517731896504
- License:
- Abstract: Machine learning (ML) models, data and software need to be regularly updated whenever essential version updates are released and feasible for integration. This is a basic but most challenging requirement to satisfy in the edge, due to the various system constraints and the major impact that an update can have on robustness and stability. In this paper, we formulate for the first time the ML model versioning optimization problem, and propose effective solutions, including the update automation with reinforcement learning (RL) based algorithm. We study the edge network environment due to the known constraints in performance, response time, security, and reliability, which make updates especially challenging. The performance study shows that model version updates can be fully and effectively automated with reinforcement learning method. We show that for every range of server load values, the proper versioning can be found that improves security, reliability and/or ML model accuracy, while assuring a comparably lower response time.
- Abstract(参考訳): 機械学習(ML)モデル、データ、ソフトウェアは、必須のバージョンのアップデートがリリースされ、統合可能であれば、定期的に更新する必要がある。
これは、さまざまなシステムの制約と、アップデートが堅牢性と安定性にもたらす大きな影響のため、エッジで満たすための基本的だが最も難しい要件である。
本稿では,MLモデルバージョニング最適化問題が初めて定式化され,強化学習(RL)に基づくアルゴリズムによる更新自動化を含む効果的な解が提案される。
我々は、パフォーマンス、応答時間、セキュリティ、信頼性の既知の制約により、エッジネットワーク環境を調査し、更新を特に困難にしている。
性能調査により、モデルバージョン更新は強化学習法により完全かつ効果的に自動化できることが示されている。
各サーバの負荷値に対して,セキュリティ,信頼性,および/またはMLモデルの精度を向上する適切なバージョニングを実現するとともに,応答時間を大幅に短縮することを示す。
関連論文リスト
- Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
言語化機械学習(VML)の枠組みを紹介する。
VMLはパラメータ空間を人間の解釈可能な自然言語に制限する。
我々は,VMLの有効性を実証的に検証し,VMLがより強力な解釈可能性を実現するためのステップストーンとして機能することを期待する。
論文 参考訳(メタデータ) (2024-06-06T17:59:56Z) - Advancing the Robustness of Large Language Models through Self-Denoised Smoothing [50.54276872204319]
大規模言語モデル(LLM)は大きな成功を収めたが、敵の摂動に対する脆弱性は大きな懸念を引き起こしている。
本稿では,LLMのマルチタスク特性を活用して,まずノイズの入力を識別し,次にこれらの復号化バージョンに基づいて予測を行う。
LLMのロバスト性を高めるために個別のモデルを訓練する必要がある従来のコンピュータビジョンのスムース化技術とは異なり、本手法は効率と柔軟性を著しく向上させる。
論文 参考訳(メタデータ) (2024-04-18T15:47:00Z) - Reliable Feature Selection for Adversarially Robust Cyber-Attack Detection [0.0]
この研究は、複数のメソッドを組み合わせて複数のネットワークデータセットに適用する機能選択とコンセンサスプロセスを示す。
データ多様性が向上し、最高の時間関連機能とより具体的な機能セットを選択し、敵のトレーニングを実行することで、MLモデルはより逆向きに堅牢な一般化を実現することができた。
論文 参考訳(メタデータ) (2024-04-05T16:01:21Z) - Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences [6.067007470552307]
そこで本研究では,繰り返しのトレーニングにおいて安定な機械学習モデルのシーケンスを見つける手法を提案する。
最適モデルの復元が保証される混合整数最適化の定式化を開発する。
本手法は, 予測力の小さい, 制御可能な犠牲を伴い, 厳密に訓練されたモデルよりも強い安定性を示す。
論文 参考訳(メタデータ) (2024-03-28T22:45:38Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
本稿では、利用可能なデータからシステムダイナミクスを推定し、仮想モデルロールアウトにおけるポリシー最適化を行うモデルベース強化学習アルゴリズムについて考察する。
このアプローチは、実際のシステムで破滅的な失敗を引き起こす可能性のあるモデルエラーを悪用することに対して脆弱である。
D4RLベンチマークの1つのよく校正された自己回帰モデルにより、より良い性能が得られることを示す。
論文 参考訳(メタデータ) (2024-02-05T10:18:15Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - On Fast Adversarial Robustness Adaptation in Model-Agnostic
Meta-Learning [100.14809391594109]
モデルに依存しないメタラーニング(MAML)は、数発の学習において最も成功したメタラーニング手法の1つである。
メタモデルの一般化力にもかかわらず、マルチショット学習においてMDLがいかに敵対的堅牢性を維持することができるかは明らかではない。
本稿では,ラベルなしデータ拡張,高速な攻撃生成,計算量軽微な微調整を可能にする,汎用的かつ最適化が容易なロバストネス正規化メタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-20T22:03:04Z) - Robusta: Robust AutoML for Feature Selection via Reinforcement Learning [24.24652530951966]
強化学習(RL)に基づく初の堅牢なAutoMLフレームワークRobostaを提案します。
このフレームワークは,良性サンプルの競争精度を維持しつつ,モデルロバスト性を最大22%向上させることができることを示す。
論文 参考訳(メタデータ) (2021-01-15T03:12:29Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - An Empirical Analysis of Backward Compatibility in Machine Learning
Systems [47.04803977692586]
MLモデルの改善を目的としたアップデートでは,下流システムやユーザに大きな影響を及ぼす可能性のある,新たなエラーが発生する可能性がある。
例えば、画像認識などのクラウドベースの分類サービスで使用されるモデルの更新は、予期しない誤った振る舞いを引き起こす可能性がある。
論文 参考訳(メタデータ) (2020-08-11T08:10:58Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。