Artificial Intelligence for Microbiology and Microbiome Research
- URL: http://arxiv.org/abs/2411.01098v1
- Date: Sat, 02 Nov 2024 01:03:43 GMT
- Title: Artificial Intelligence for Microbiology and Microbiome Research
- Authors: Xu-Wen Wang, Tong Wang, Yang-Yu Liu,
- Abstract summary: microbiology and microbiome research experiencing breakthroughs through machine learning and deep learning applications.
This review provides a comprehensive overview of AI-driven approaches tailored for microbiology and microbiome studies.
- Score: 3.4014872469607695
- License:
- Abstract: Advancements in artificial intelligence (AI) have transformed many scientific fields, with microbiology and microbiome research now experiencing significant breakthroughs through machine learning and deep learning applications. This review provides a comprehensive overview of AI-driven approaches tailored for microbiology and microbiome studies, emphasizing both technical advancements and biological insights. We begin with an introduction to foundational AI techniques, including primary machine learning paradigms and various deep learning architectures, and offer guidance on choosing between machine learning and deep learning methods based on specific research goals. The primary section on application scenarios spans diverse research areas, from taxonomic profiling, functional annotation & prediction, microbe-X interactions, microbial ecology, metabolic modeling, precision nutrition, clinical microbiology, to prevention & therapeutics. Finally, we discuss challenges unique to this field, including the balance between interpretability and complexity, the "small n, large p" problem, and the critical need for standardized benchmarking datasets to validate and compare models. Together, this review underscores AI's transformative role in microbiology and microbiome research, paving the way for innovative methodologies and applications that enhance our understanding of microbial life and its impact on our planet and our health.
Related papers
- Explainable AI Methods for Multi-Omics Analysis: A Survey [3.885941688264509]
Multi-omics refers to the integrative analysis of data derived from multiple 'omes'
Deep learning methods are increasingly utilized to integrate multi-omics data, offering insights into molecular interactions and enhancing research into complex diseases.
These models, with their numerous interconnected layers and nonlinear relationships, often function as black boxes, lacking transparency in decision-making processes.
This review explores how xAI can improve the interpretability of deep learning models in multi-omics research, highlighting its potential to provide clinicians with clear insights.
arXiv Detail & Related papers (2024-10-15T05:01:17Z) - Recent advances in deep learning and language models for studying the microbiome [3.2676374150532173]
We review applications of deep learning and language models in analyzing microbiome and metagenomics data.
We provide an extensive overview of protein/genomic language modeling and their contributions to microbiome studies.
We also discuss applications such as novel viromics language modeling, biosynthetic gene cluster prediction, and knowledge integration for metagenomics studies.
arXiv Detail & Related papers (2024-09-15T18:32:31Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - AI-based analysis of super-resolution microscopy: Biological discovery in the absence of ground truth [12.889035834745995]
We describe the application of weakly supervised paradigms to super-resolution microscopy and its potential to enable the accelerated exploration of the nanoscale architecture of subcellular macromolecules and organelles.
arXiv Detail & Related papers (2023-05-26T18:31:53Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
Data-driven methods like machine learning (ML) approaches have a high potential to rationally explore large design spaces.
The aim of this review is to demonstrate how ML methods have been applied so far in bioprocess development.
arXiv Detail & Related papers (2022-10-04T13:48:59Z) - Understanding microbiome dynamics via interpretable graph representation
learning [0.0]
Large-scale perturbations in the microbiome constitution are strongly correlated with the health and functioning of human physiology.
We propose to model these interactions as a time-evolving graph whose nodes are microbes and edges are interactions among them.
Motivated by the need to analyse such complex interactions, we develop a method that learns a low-dimensional representation of the time-evolving graph.
arXiv Detail & Related papers (2022-03-02T18:53:14Z) - Machine Learning Applications for Therapeutic Tasks with Genomics Data [49.98249191161107]
We review the literature on machine learning applications for genomics through the lens of therapeutic development.
We identify twenty-two machine learning in genomics applications across the entire therapeutics pipeline.
We pinpoint seven important challenges in this field with opportunities for expansion and impact.
arXiv Detail & Related papers (2021-05-03T21:20:20Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.