論文の概要: Using Half-Precision for GNN Training
- arxiv url: http://arxiv.org/abs/2411.01109v1
- Date: Sat, 02 Nov 2024 02:14:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:47:13.590368
- Title: Using Half-Precision for GNN Training
- Title(参考訳): 半精度を用いたGNN訓練
- Authors: Arnab Kanti Tarafder, Yidong Gong, Pradeep Kumar,
- Abstract要約: ディープラーニングのための半精度ベースGNNシステムであるHalfGNNを紹介する。
新しいベクトル演算によりデータ負荷と削減性能が向上し、離散化された SpMM は値オーバーフローを克服する。
HalfGNNは、GAT、GCN、GINのDGL(float-based)のトレーニング時間の平均2.30倍のスピードアップを実現し、同様の精度を実現し、2.67倍のメモリ節約を実現している。
- 参考スコア(独自算出の注目度): 1.7117325236320966
- License:
- Abstract: Recent trends in lower precision, e.g. half-precision floating point, training have shown improved system performance and reduced memory usage for Deep Learning while maintaining accuracy. However, current GNN systems cannot achieve such goals for GNN, as our analyses show that they massively underperform while showing abnormal accuracy when using half-precision. These systems suffer from value overflow issues due to lowered precision, under-utilization of hardware resources, and poor training performance. To mitigate this, we introduce HalfGNN, a half-precision based GNN system. HalfGNN proposes novel techniques: new vector operations for half-precision data types that improve data load and reduction performance, and discretized SpMM that overcomes the value overflow and natively provides workload balancing. Such techniques improve hardware utilization, reduce memory usage, and remove atomic writes. Evaluations show that HalfGNN achieves on average of 2.30X speedup in training time over DGL (float-based) for GAT, GCN, and GIN respectively while achieving similar accuracy, and saving 2.67X memory.
- Abstract(参考訳): 近年の低精度浮動小数点,例えば半精度浮動小数点,訓練の傾向はシステム性能の向上と深層学習におけるメモリ使用量の削減を示し,精度の維持を図っている。
しかし,現在のGNNシステムでは,半精度を用いた場合,異常な精度を示しながら性能が大幅に低下しているため,そのような目標を達成できない。
これらのシステムは、精度の低下、ハードウェアリソースの未使用化、トレーニング性能の低下など、価値オーバーフローの問題に悩まされている。
これを軽減するために,半精度ベースGNNシステムであるHalfGNNを導入する。
HalfGNNは、データの負荷と性能を向上する半精度データ型のための新しいベクター操作と、バリューオーバーフローを克服し、ネイティブにワークロードのバランシングを提供する離散化されたSpMMを提案する。
このような技術はハードウェア利用を改善し、メモリ使用量を減らし、アトミック書き込みを削除する。
評価の結果、HalfGNNは、GAT、GCN、GINのDGL(float-based)よりも平均2.30倍のスピードアップを実現し、同様の精度を実現し、2.67倍のメモリ節約を実現している。
関連論文リスト
- ZOBNN: Zero-Overhead Dependable Design of Binary Neural Networks with Deliberately Quantized Parameters [0.0]
本稿では,低精度ニューラルネットワークの3番目の利点として,耐故障性の改善について紹介する。
本稿では,メモリ障害がBNN(State-of-the-art binary neural network)に与える影響を包括的解析により検討する。
本稿では,新しい均一量子化手法により,フロートパラメータの範囲を制限することにより,BNNの信頼性を向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-07-06T05:31:11Z) - Towards Cheaper Inference in Deep Networks with Lower Bit-Width
Accumulators [25.100092698906437]
現在のハードウェアは依然として高精度なコア操作に依存している。
これは、これまでのところ、低精度のアキュムレータの使用が性能を著しく低下させたためである。
本稿では,12ドル(約1万2000円)の安価なアキュムレータを初めて活用するために,高品質DNNの訓練と微調整を行うための簡単な方法を提案する。
論文 参考訳(メタデータ) (2024-01-25T11:46:01Z) - Low-bit Quantization for Deep Graph Neural Networks with
Smoothness-aware Message Propagation [3.9177379733188715]
本稿では,資源制約のある環境において,これらの課題に対処するためのエンドツーエンドソリューションを提案する。
本稿では,学習中のメッセージパッシングからノード分類まで,GNNのすべての段階に対する量子化に基づくアプローチを提案する。
提案した量子化器は量子化範囲を学習し、低ビット量子化の下でも同等の精度でモデルサイズを削減する。
論文 参考訳(メタデータ) (2023-08-29T00:25:02Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
我々は、ニューラル演算子学習が本質的に近似誤差を誘導する直感の上に構築する。
提案手法では,GPUメモリ使用量を最大50%削減し,スループットを58%向上する。
論文 参考訳(メタデータ) (2023-07-27T17:42:06Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNは、実数値重みとスケールファクターの内在的双線型関係を無視している。
私たちの仕事は、双線形の観点からBNNを最適化する最初の試みです。
我々は、様々なモデルやデータセット上で最先端のBNNに対して印象的な性能を示す頑健なRBONNを得る。
論文 参考訳(メタデータ) (2022-09-04T06:45:33Z) - Towards Lossless ANN-SNN Conversion under Ultra-Low Latency with Dual-Phase Optimization [30.098268054714048]
非同期離散イベントで動作するスパイキングニューラルネットワーク(SNN)は、スパース計算によるエネルギー効率の向上を示す。
ディープSNNを実装するための一般的なアプローチは、ANNの効率的なトレーニングとSNNの効率的な推論を組み合わせたANN-SNN変換である。
本稿では,SNNにおける負または過フロー残留膜電位の誤表現に起因する性能劣化を最初に同定する。
そこで我々は,変換誤差を量子化誤差,クリッピング誤差,残留膜電位表現誤差の3つの部分に分解した。
論文 参考訳(メタデータ) (2022-05-16T06:53:14Z) - Low-Precision Training in Logarithmic Number System using Multiplicative
Weight Update [49.948082497688404]
大規模ディープニューラルネットワーク(DNN)のトレーニングは、現在かなりの量のエネルギーを必要としており、深刻な環境影響をもたらす。
エネルギーコストを削減するための有望なアプローチの1つは、DNNを低精度で表現することである。
対数数システム(LNS)と乗算重み更新訓練法(LNS-Madam)を併用した低精度トレーニングフレームワークを共同で設計する。
論文 参考訳(メタデータ) (2021-06-26T00:32:17Z) - FTBNN: Rethinking Non-linearity for 1-bit CNNs and Going Beyond [23.5996182207431]
本稿では,二項化畳み込み過程が,その誤差を最小限に抑えるために線形性を増大させ,BNNの識別能力を損なうことを示す。
我々は、その矛盾を修正するために、適切な非線形モジュールを再検討し、調整することで、最先端のパフォーマンスを実現する強力なベースラインに繋がる。
論文 参考訳(メタデータ) (2020-10-19T08:11:48Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
本稿では,浮動小数点演算を除去するために,AQDと呼ばれる高精度な量子化オブジェクト検出ソリューションを提案する。
我々のAQDは、非常に低ビットのスキームの下での完全精度と比較して、同等またはそれ以上の性能を実現しています。
論文 参考訳(メタデータ) (2020-07-14T09:07:29Z) - Learning Low-rank Deep Neural Networks via Singular Vector Orthogonality
Regularization and Singular Value Sparsification [53.50708351813565]
各ステップにSVDを適用することなく、トレーニング中に低ランクDNNを明示的に達成する最初の方法であるSVDトレーニングを提案する。
SVDトレーニングがDNN層のランクを著しく低減し,同じ精度で計算負荷の低減を実現することを実証的に示す。
論文 参考訳(メタデータ) (2020-04-20T02:40:43Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。