論文の概要: MIC: Medical Image Classification Using Chest X-ray (COVID-19 and Pneumonia) Dataset with the Help of CNN and Customized CNN
- arxiv url: http://arxiv.org/abs/2411.01163v1
- Date: Sat, 02 Nov 2024 07:18:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:20.018681
- Title: MIC: Medical Image Classification Using Chest X-ray (COVID-19 and Pneumonia) Dataset with the Help of CNN and Customized CNN
- Title(参考訳): MIC:CNNとカスタマイズCNNの助けを借りた胸部X線(COVID-19と肺炎)データセットを用いた医用画像分類
- Authors: Nafiz Fahad, Fariha Jahan, Md Kishor Morol, Rasel Ahmed, Md. Abdullah-Al-Jubair,
- Abstract要約: 本研究では,医用画像分類のための独自の畳み込みニューラルネットワーク(CCNN)を提案する。
提案されたCCNNは、同じデータセットを使用した畳み込みニューラルネットワーク(CNN)や他のモデルと比較された。
この研究によると、畳み込みニューラルネットワーク(CCNN)は95.62%の検証精度と0.1270の検証損失を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The COVID19 pandemic has had a detrimental impact on the health and welfare of the worlds population. An important strategy in the fight against COVID19 is the effective screening of infected patients, with one of the primary screening methods involving radiological imaging with the use of chest Xrays. This is why this study introduces a customized convolutional neural network (CCNN) for medical image classification. This study used a dataset of 6432 images named Chest Xray (COVID19 and Pneumonia), and images were preprocessed using techniques, including resizing, normalizing, and augmentation, to improve model training and performance. The proposed CCNN was compared with a convolutional neural network (CNN) and other models that used the same dataset. This research found that the Convolutional Neural Network (CCNN) achieved 95.62% validation accuracy and 0.1270 validation loss. This outperformed earlier models and studies using the same dataset. This result indicates that our models learn effectively from training data and adapt efficiently to new, unseen data. In essence, the current CCNN model achieves better medical image classification performance, which is why this CCNN model efficiently classifies medical images. Future research may extend the models application to other medical imaging datasets and develop realtime offline medical image classification websites or apps.
- Abstract(参考訳): 新型コロナウイルスのパンデミックは世界の人々の健康と福祉に有害な影響を与えた。
COVID19との戦いにおける重要な戦略は、感染した患者の効果的なスクリーニングであり、胸部X線を用いた放射線画像撮影を含む主要なスクリーニング方法の1つである。
そこで本研究では,医用画像分類のための独自の畳み込みニューラルネットワーク(CCNN)を導入する。
この研究では、Chest Xray(COVID19と肺炎)と呼ばれる6432枚の画像のデータセットを使用し、リサイズ、正規化、拡張といった技術を用いて画像の事前処理を行い、モデルトレーニングとパフォーマンスを改善した。
提案されたCCNNは、同じデータセットを使用した畳み込みニューラルネットワーク(CNN)や他のモデルと比較された。
この研究によると、畳み込みニューラルネットワーク(CCNN)は95.62%の検証精度と0.1270の検証損失を達成した。
これは、以前のモデルと、同じデータセットを使用した研究よりも優れていた。
この結果から,我々のモデルはトレーニングデータから効果的に学習し,新しい未知のデータに効率的に適応できることが示唆された。
基本的に,現在のCCNNモデルでは,医用画像の分類性能が向上しているため,医用画像の分類を効率的に行うことができる。
将来の研究は、モデルを他の医療画像データセットに拡張し、リアルタイムオフラインの医療画像分類ウェブサイトやアプリを開発するかもしれない。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Randomly Initialized Convolutional Neural Network for the Recognition of
COVID-19 using X-ray Images [0.0]
新型コロナウイルス(COVID-19)は世界的なパンデミックと宣言されている。
COVID-19を検出するための潜在的な解決策の1つは、ディープラーニング(DL)モデルを使用して胸部X線画像を分析することである。
本研究では,新型コロナウイルスの認識のための新しいCNNアーキテクチャを提案する。
提案したCNNモデルでは、それぞれ94%と99%の精度で、COVID-19データセットが強化されている。
論文 参考訳(メタデータ) (2021-05-17T23:40:37Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Fusion of convolution neural network, support vector machine and Sobel
filter for accurate detection of COVID-19 patients using X-ray images [14.311213877254348]
新型コロナウイルス(COVID-19)は現在、世界中で流行する最も一般的な伝染病である。
新型コロナウイルスの感染拡大を防ぐために, 迅速診断のための臨床手順とともに, 自動診断システムを使用することが不可欠である。
本研究では, コンボリューションニューラルネットワーク(CNN), サポートベクターマシン(SVM), ソベルフィルタを融合させて, X線画像を用いたCOVID-19の検出を提案する。
論文 参考訳(メタデータ) (2021-02-13T08:08:36Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
本稿では,GAN(Cycle-Consistency Generative Adversarial Networks)を用いた医用画像生成のためのデータ拡張手法を提案する。
提案モデルでは,正常画像から腫瘍画像を生成することができ,腫瘍画像から正常画像を生成することもできる。
本研究では,従来のデータ拡張手法と合成画像を用いた分類モデルを用いて,実画像を用いた分類モデルを訓練する。
論文 参考訳(メタデータ) (2020-11-15T14:01:24Z) - Chest X-ray Image Phase Features for Improved Diagnosis of COVID-19
Using Convolutional Neural Network [2.752817022620644]
最近の研究で、新型コロナウイルス患者のX線写真には、新型コロナウイルスに関する情報が含まれていることが示されている。
胸部X線(CXR)は、高速な撮像時間、広範囲の可用性、低コスト、可搬性から注目されている。
本研究では、CXR画像から新型コロナウイルスの分類を改善するために、新しい多機能畳み込みニューラルネットワーク(CNN)アーキテクチャを設計する。
論文 参考訳(メタデータ) (2020-11-06T20:26:26Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
最も一般的な悪性骨腫瘍は骨肉腫である。
CNNは、外科医の作業量を著しく減らし、患者の状態の予後を良くする。
CNNは、より信頼できるパフォーマンスを達成するために、大量のデータをトレーニングする必要があります。
論文 参考訳(メタデータ) (2020-11-02T18:16:17Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - A Light CNN for detecting COVID-19 from CT scans of the chest [9.088303226909279]
OVID-19は世界保健機関(WHO)によってパンデミックと宣言された世界規模の病気である。
深層学習は医学画像や畳み込みニューラルネットワーク(CNN)にも広く使われており、CT画像の分類にも使われている。
我々は,SqueezeNetのモデルに基づく軽量CNN設計を提案し,新型コロナウイルスのCT画像の効率的な識別を行う。
論文 参考訳(メタデータ) (2020-04-24T07:58:49Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
医用画像の特徴に対処する枠組みを提案する。
このモデルはまず、画像全体の低容量だがメモリ効率のよいネットワークを使用して、最も情報性の高い領域を識別する。
次に、選択したリージョンから詳細を収集するために、別の高容量ネットワークを適用します。
最後に、グローバルおよびローカル情報を集約して最終的な予測を行うフュージョンモジュールを使用する。
論文 参考訳(メタデータ) (2020-02-13T15:28:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。