Embedding Space Allocation with Angle-Norm Joint Classifiers for Few-Shot Class-Incremental Learning
- URL: http://arxiv.org/abs/2411.09250v1
- Date: Thu, 14 Nov 2024 07:31:12 GMT
- Title: Embedding Space Allocation with Angle-Norm Joint Classifiers for Few-Shot Class-Incremental Learning
- Authors: Dunwei Tu, Huiyu Yi, Tieyi Zhang, Ruotong Li, Furao Shen, Jian Zhao,
- Abstract summary: Few-shot class-incremental learning aims to continually learn new classes from only a few samples.
Current classes occupy the entire feature space, which is detrimental to learning new classes.
Small number of samples in incremental rounds is insufficient for fully training.
- Score: 8.321592316231786
- License:
- Abstract: Few-shot class-incremental learning (FSCIL) aims to continually learn new classes from only a few samples without forgetting previous ones, requiring intelligent agents to adapt to dynamic environments. FSCIL combines the characteristics and challenges of class-incremental learning and few-shot learning: (i) Current classes occupy the entire feature space, which is detrimental to learning new classes. (ii) The small number of samples in incremental rounds is insufficient for fully training. In existing mainstream virtual class methods, for addressing the challenge (i), they attempt to use virtual classes as placeholders. However, new classes may not necessarily align with the virtual classes. For the challenge (ii), they replace trainable fully connected layers with Nearest Class Mean (NCM) classifiers based on cosine similarity, but NCM classifiers do not account for sample imbalance issues. To address these issues in previous methods, we propose the class-center guided embedding Space Allocation with Angle-Norm joint classifiers (SAAN) learning framework, which provides balanced space for all classes and leverages norm differences caused by sample imbalance to enhance classification criteria. Specifically, for challenge (i), SAAN divides the feature space into multiple subspaces and allocates a dedicated subspace for each session by guiding samples with the pre-set category centers. For challenge (ii), SAAN establishes a norm distribution for each class and generates angle-norm joint logits. Experiments demonstrate that SAAN can achieve state-of-the-art performance and it can be directly embedded into other SOTA methods as a plug-in, further enhancing their performance.
Related papers
- Covariance-based Space Regularization for Few-shot Class Incremental Learning [25.435192867105552]
Few-shot Class Incremental Learning (FSCIL) requires the model to continually learn new classes with limited labeled data.
Due to the limited data in incremental sessions, models are prone to overfitting new classes and suffering catastrophic forgetting of base classes.
Recent advancements resort to prototype-based approaches to constrain the base class distribution and learn discriminative representations of new classes.
arXiv Detail & Related papers (2024-11-02T08:03:04Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
Few-shot class-incremental learning (FSCIL) confronts the challenge of integrating new classes into a model with minimal training samples.
Traditional methods widely adopt static adaptation relying on a fixed parameter space to learn from data that arrive sequentially.
We propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation.
arXiv Detail & Related papers (2024-07-08T17:09:39Z) - Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning [65.57123249246358]
We propose ExpAndable Subspace Ensemble (EASE) for PTM-based CIL.
We train a distinct lightweight adapter module for each new task, aiming to create task-specific subspaces.
Our prototype complement strategy synthesizes old classes' new features without using any old class instance.
arXiv Detail & Related papers (2024-03-18T17:58:13Z) - Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration [67.69532794049445]
We find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes.
We propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes.
arXiv Detail & Related papers (2023-12-08T18:24:08Z) - Learning with Fantasy: Semantic-Aware Virtual Contrastive Constraint for
Few-Shot Class-Incremental Learning [42.551377055029334]
Few-shot class-incremental learning (FSCIL) aims at learning to classify new classes continually from limited samples without forgetting the old classes.
We propose Semantic-Aware Virtual Contrastive model (SAVC), a novel method that facilitates separation between new classes and base classes.
Our SAVC significantly boosts base class separation and novel class generalization, achieving new state-of-the-art performance on the three widely-used FSCIL benchmark datasets.
arXiv Detail & Related papers (2023-04-02T01:51:24Z) - DiGeo: Discriminative Geometry-Aware Learning for Generalized Few-Shot
Object Detection [39.937724871284665]
Generalized few-shot object detection aims to achieve precise detection on both base classes with abundant annotations and novel classes with limited training data.
Existing approaches enhance few-shot generalization with the sacrifice of base-class performance.
We propose a new training framework, DiGeo, to learn Geometry-aware features of inter-class separation and intra-class compactness.
arXiv Detail & Related papers (2023-03-16T22:37:09Z) - Neural Collapse Inspired Feature-Classifier Alignment for Few-Shot Class
Incremental Learning [120.53458753007851]
Few-shot class-incremental learning (FSCIL) has been a challenging problem as only a few training samples are accessible for each novel class in the new sessions.
We deal with this misalignment dilemma in FSCIL inspired by the recently discovered phenomenon named neural collapse.
We propose a neural collapse inspired framework for FSCIL. Experiments on the miniImageNet, CUB-200, and CIFAR-100 datasets demonstrate that our proposed framework outperforms the state-of-the-art performances.
arXiv Detail & Related papers (2023-02-06T18:39:40Z) - Class-Incremental Learning with Cross-Space Clustering and Controlled
Transfer [9.356870107137093]
In class-incremental learning, the model is expected to learn new classes continually while maintaining knowledge on previous classes.
We propose two distillation-based objectives for class incremental learning.
arXiv Detail & Related papers (2022-08-07T16:28:02Z) - Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks [59.12108527904171]
A model should recognize new classes and maintain discriminability over old classes.
The task of recognizing few-shot new classes without forgetting old classes is called few-shot class-incremental learning (FSCIL)
We propose a new paradigm for FSCIL based on meta-learning by LearnIng Multi-phase Incremental Tasks (LIMIT)
arXiv Detail & Related papers (2022-03-31T13:46:41Z) - Few-Shot Object Detection via Association and DIscrimination [83.8472428718097]
Few-shot object detection via Association and DIscrimination builds up a discriminative feature space for each novel class with two integral steps.
Experiments on Pascal VOC and MS-COCO datasets demonstrate FADI achieves new SOTA performance, significantly improving the baseline in any shot/split by +18.7.
arXiv Detail & Related papers (2021-11-23T05:04:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.