論文の概要: Rotational Odometry using Ultra Low Resolution Thermal Cameras
- arxiv url: http://arxiv.org/abs/2411.01227v1
- Date: Sat, 02 Nov 2024 12:15:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:27:17.280411
- Title: Rotational Odometry using Ultra Low Resolution Thermal Cameras
- Title(参考訳): 超低解像度熱カメラを用いた回転オドメトリー
- Authors: Ali Safa,
- Abstract要約: この手紙は、我々の知る限りでは、回転計測のための超低解像度熱カメラの適用性に関する最初の研究である。
RGBカメラのような他のモダリティではなく、超低解像度のサーマルカメラを使うことは、照明条件に対するロバスト性によって動機づけられる。
CNN推定精度に対するサーマルカメラ解像度と連続フレーム数の影響を判定するための実験およびアブレーション研究を行った。
- 参考スコア(独自算出の注目度): 1.3986052523534573
- License:
- Abstract: This letter provides what is, to the best of our knowledge, a first study on the applicability of ultra-low-resolution thermal cameras for providing rotational odometry measurements to navigational devices such as rovers and drones. Our use of an ultra-low-resolution thermal camera instead of other modalities such as an RGB camera is motivated by its robustness to lighting conditions, while being one order of magnitude less cost-expensive compared to higher-resolution thermal cameras. After setting up a custom data acquisition system and acquiring thermal camera data together with its associated rotational speed label, we train a small 4-layer Convolutional Neural Network (CNN) for regressing the rotational speed from the thermal data. Experiments and ablation studies are conducted for determining the impact of thermal camera resolution and the number of successive frames on the CNN estimation precision. Finally, our novel dataset for the study of low-resolution thermal odometry is openly released with the hope of benefiting future research.
- Abstract(参考訳): この手紙は、私たちの知る限りでは、ローバーやドローンのような航法装置に回転速度測定を提供するための超低解像度熱カメラの適用性に関する最初の研究である。
我々は、RGBカメラのような他のモダリティではなく、超低解像度のサーマルカメラを使用することで、高解像度サーマルカメラに比べて一桁もコストを抑えつつ、照明条件に頑健さを動機付けている。
カスタムデータ取得システムを構築し,それに関連する回転速度ラベルとともに熱カメラデータを取得すると,熱データから回転速度を回帰する4層畳み込みニューラルネットワーク(CNN)を訓練する。
CNN推定精度に対するサーマルカメラ解像度と連続フレーム数の影響を判定するための実験およびアブレーション研究を行った。
最後に,低分解能熱オドメトリー研究のための新しいデータセットを公開し,今後の研究に期待する。
関連論文リスト
- In-Situ Infrared Camera Monitoring for Defect and Anomaly Detection in Laser Powder Bed Fusion: Calibration, Data Mapping, and Feature Extraction [0.26999000177990923]
レーザーパウダーベッド融合(LPBF)プロセスは, 溶融プール不安定性, スパッタリング, 温度上昇, 粉体拡散異常による欠陥を生じさせる可能性がある。
内部監視による欠陥の特定には、通常、生成された大量のデータを収集、保存、分析する必要がある。
論文 参考訳(メタデータ) (2024-07-17T16:02:22Z) - Resource-Efficient Gesture Recognition using Low-Resolution Thermal
Camera via Spiking Neural Networks and Sparse Segmentation [1.7758299835471887]
本研究は,安価で低解像度(24×32)熱センサを用いた手動作認識のための新しいアプローチを提案する。
標準のRGBカメラと比較して、提案システムは照明のバリエーションに敏感である。
本稿では,最近提案されたモノスタブル・マルチバイブレータ(MMV)ニューラルネットワークを新しいSNNのクラスとして革新的に利用することで,メモリと計算の複雑さが1桁以上小さくなることを示す。
論文 参考訳(メタデータ) (2024-01-12T13:20:01Z) - Simultaneous temperature estimation and nonuniformity correction from
multiple frames [0.0]
低コストのマイクロボロメーターベースの赤外線カメラは、空間的に不均一であり、温度測定でドリフトする傾向がある。
低コストマイクロボロメータカメラで捉えた複数フレームからの同時温度推定と非均一性補正(NUC)のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-23T11:28:25Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
本研究では,高空間分解能センサと高時間分解能検出器を組み合わせた適応ゲート型ハイブリッド高分解能カメラ(HIC)を提案する。
空間分解能は9メガピクセル近く、時間分解能はナノ秒に近いため、このシステムは以前は実現不可能だった量子光学実験の実現を可能にする。
論文 参考訳(メタデータ) (2023-05-25T16:59:27Z) - Long-Range Thermal 3D Perception in Low Contrast Environments [0.0]
本報告では, マイクロボロメータを用いたLWIR(Long Wave Infrared)検出器の感度の劇的改善の実現可能性を証明するため, フェーズIの取り組みの結果について述べる。
結果として生じる低SWaP-C熱深度センシングシステムにより、高度空力(AAM)のための自律型航空車両の状況把握が可能となる。
低コントラストの静的および移動物体を含む周囲環境の堅牢な3D情報を提供する。
論文 参考訳(メタデータ) (2021-12-10T01:16:44Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
赤外線(IR)カメラは、照明条件や照明条件が悪ければ頑丈である。
既存のUDA手法を改善するためのアルゴリズムメタ学習フレームワークを提案する。
KAISTおよびDSIACデータセットのための最先端熱検出器を作成した。
論文 参考訳(メタデータ) (2021-10-07T02:28:18Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
空間と測光の両方を同時に活用できる効率的な完全畳み込みアーキテクチャを提案する。
分離可能な4D畳み込みと2D熱マップを使うことで、サイズが小さくなり、効率が向上する。
論文 参考訳(メタデータ) (2021-03-22T18:06:58Z) - A Large-Scale, Time-Synchronized Visible and Thermal Face Dataset [62.193924313292875]
DEVCOM Army Research Laboratory Visible-Thermal Faceデータセット(ARL-VTF)を発表します。
395人の被験者から50万枚以上の画像が得られたARL-VTFデータセットは、これまでで最大の可視画像とサーマルフェイス画像の収集データだ。
本論文では,ALL-VTFデータセットを用いたサーマルフェースランドマーク検出とサーマル・トゥ・ヴィジブルフェース検証のベンチマーク結果と分析について述べる。
論文 参考訳(メタデータ) (2021-01-07T17:17:12Z) - Online Photometric Calibration of Automatic Gain Thermal Infrared
Cameras [0.0]
サーマル赤外線カメラのオンラインフォトメトリック校正のためのアルゴリズムを紹介します。
提案手法は特別なドライバ/ハードウェアサポートを必要としない。
我々はこれを視覚計測とSLAMアルゴリズムの文脈で提示する。
論文 参考訳(メタデータ) (2020-12-07T17:51:54Z) - Towards Online Monitoring and Data-driven Control: A Study of
Segmentation Algorithms for Laser Powder Bed Fusion Processes [83.97264034062673]
レーザーパウダーベッド融合機の増加は、オンライン監視とデータ駆動制御能力を改善するためにオフ軸赤外線カメラを使用する。
我々は、各赤外線画像を前景と背景に分割する30以上のセグメンテーションアルゴリズムについて検討する。
同定されたアルゴリズムは、レーザ粉体層融合機に容易に適用でき、上記の各制限に対処し、プロセス制御を大幅に改善することができる。
論文 参考訳(メタデータ) (2020-11-18T03:30:16Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
本稿では,ディープニューラルネットワークを用いた単眼画像とレーダ点の融合により,より正確な深度推定を実現する可能性を検討する。
レーダ測定で発生するノイズが,既存の融合法の適用を妨げている主要な理由の1つであることが判明した。
実験はnuScenesデータセット上で行われ、カメラ、レーダー、LiDARの記録を様々な場面と気象条件で記録する最初のデータセットの1つである。
論文 参考訳(メタデータ) (2020-09-30T19:01:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。