ECG-PPS: Privacy Preserving Disease Diagnosis and Monitoring System for Real-Time ECG Signal
- URL: http://arxiv.org/abs/2411.01308v1
- Date: Sat, 02 Nov 2024 17:03:25 GMT
- Title: ECG-PPS: Privacy Preserving Disease Diagnosis and Monitoring System for Real-Time ECG Signal
- Authors: Beyazit Bestami Yuksel, Ayse Yilmazer Metin,
- Abstract summary: This study introduces the development of a state of the art, real time ECG monitoring and analysis system.
At its core, the system uses a three ECG connected through a serial port to capture, display, and record real time ECG data.
The system performs statistical operations on the ECG data stored in the cloud without decrypting it, using Fully Homomorphic Encryption (FHE)
- Score: 0.0
- License:
- Abstract: This study introduces the development of a state of the art, real time ECG monitoring and analysis system, incorporating cutting edge medical technology and innovative data security measures. Our system performs three distinct functions thaat real time ECG monitoring and disease detection, encrypted storage and synchronized visualization, and statistical analysis on encrypted data. At its core, the system uses a three lead ECG preamplifier connected through a serial port to capture, display, and record real time ECG data. These signals are securely stored in the cloud using robust encryption methods. Authorized medical personnel can access and decrypt this data on their computers, with AES encryption ensuring synchronized real time data tracking and visualization. Furthermore, the system performs statistical operations on the ECG data stored in the cloud without decrypting it, using Fully Homomorphic Encryption (FHE). This enables privacy preserving data analysis while ensuring the security and confidentiality of patient information. By integrating these independent functions, our system significantly enhances the security and efficiency of health monitoring. It supports critical tasks such as disease detection, patient monitoring, and preliminary intervention, all while upholding stringent data privacy standards. We provided detailed discussions on the system's architecture, hardware configuration, software implementation, and clinical performance. The results highlight the potential of this system to improve patient care through secure and efficient ECG monitoring and analysis. This work represents a significant leap forward in medical technology. By incorporating FHE into both data transmission and storage processes, we ensure continuous encryption of data throughout its lifecycle while enabling real time disease diagnosis.
Related papers
- Advancing Biomedical Signal Security: Real-Time ECG Monitoring with Chaotic Encryption [0.0]
We develop a real time ECG monitoring system that integrates chaotic encryption to protect the integrity and confidentiality of ECG signals.
Results demonstrate that chaotic encryption is effective in enhancing data security.
System's real time disease detection model, based on deep learning, operates seamlessly with encrypted data, providing accurate diagnosis without compromising security.
arXiv Detail & Related papers (2024-11-02T17:08:14Z) - Scalable Drift Monitoring in Medical Imaging AI [37.1899538374058]
We develop MMC+, an enhanced framework for scalable drift monitoring.
It builds upon the CheXstray framework that introduced real-time drift detection for medical imaging AI models.
MMC+ offers a reliable and cost-effective alternative to continuous performance monitoring.
arXiv Detail & Related papers (2024-10-17T02:57:35Z) - ConvexECG: Lightweight and Explainable Neural Networks for Personalized, Continuous Cardiac Monitoring [43.23305904110984]
ConvexECG is an explainable and resource-efficient method for reconstructing six-lead electrocardiograms from single-lead data.
We demonstrate that ConvexECG achieves accuracy comparable to larger neural networks while significantly reducing computational overhead.
arXiv Detail & Related papers (2024-09-19T06:14:30Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
The Internet of things (IoT) can significantly enhance the quality of human life, specifically in healthcare.
The human digital twin (HDT) is proposed as an innovative paradigm that can comprehensively characterize the replication of the individual human body.
HDT is envisioned to empower IoT-healthcare beyond the application of healthcare monitoring by acting as a versatile and vivid human digital testbed.
Recently, generative artificial intelligence (GAI) may be a promising solution because it can leverage advanced AI algorithms to automatically create, manipulate, and modify valuable while diverse data.
arXiv Detail & Related papers (2024-01-22T03:17:41Z) - Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
Existing monitoring approaches were designed on the premise that medical devices track several health metrics concurrently.
This means that they report all relevant health values within that scope, which can result in excess resource use and the gathering of extraneous data.
We propose Dynamic Activity-Aware Health Monitoring strategy (DActAHM) for striking a balance between optimal monitoring performance and cost efficiency.
arXiv Detail & Related papers (2024-01-19T16:26:35Z) - CarDS-Plus ECG Platform: Development and Feasibility Evaluation of a
Multiplatform Artificial Intelligence Toolkit for Portable and Wearable
Device Electrocardiograms [0.3069335774032178]
Single-lead electrocardiogram (ECG) recordings have emerged as a crucial source of information for monitoring cardiovascular health.
There has been significant advances in artificial intelligence capable of interpreting these 1-lead ECGs.
This design study describes the development of an innovative multiplatform system aimed at the rapid deployment of AI-based ECG solutions.
arXiv Detail & Related papers (2023-10-10T20:33:48Z) - RARE: Robust Masked Graph Autoencoder [45.485891794905946]
Masked graph autoencoder (MGAE) has emerged as a promising self-supervised graph pre-training (SGP) paradigm.
We propose a novel SGP method termed Robust mAsked gRaph autoEncoder (RARE) to improve the certainty in inferring masked data.
arXiv Detail & Related papers (2023-04-04T03:35:29Z) - Automated, real-time hospital ICU emergency signaling: A field-level
implementation [1.5399429731150378]
We design a novel central patient monitoring system.
The proposed prototype comprises of inexpensive peripherals and simplistic user interface.
By evaluating continuous patient data, we show that the system is able to detect critical events in real-time reliably and has low false alarm rate.
arXiv Detail & Related papers (2021-11-03T03:32:33Z) - A highly scalable repository of waveform and vital signs data from
bedside monitoring devices [0.0]
Machine learning is driving the appetite of the research community for various types of signal data such as patient vitals.
Health care systems are ill suited for massive processing of large volumes of data.
We have developed a solution that siphons off patient vital data on a nightly basis from on-premises bio-medical systems to a cloud storage location as a permanent archive.
arXiv Detail & Related papers (2021-06-07T20:59:58Z) - Information Theoretic Key Agreement Protocol based on ECG signals [7.417312533172291]
Wireless body area networks (WBANs) are becoming increasingly popular as they allow individuals to monitor their vitals remotely from the hospital.
With the spread of the SARS-CoV-2 pandemic, the availability of portable pulse-oximeters and wearable heart rate detectors has boomed in the market.
In 2020 we assisted to an unprecedented increase of healthcare breaches, revealing the extreme vulnerability of the current generation of WBANs.
arXiv Detail & Related papers (2021-05-14T18:58:44Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.