論文の概要: False Data Injection Attack Detection in Edge-based Smart Metering Networks with Federated Learning
- arxiv url: http://arxiv.org/abs/2411.01313v2
- Date: Wed, 06 Nov 2024 18:30:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 11:17:18.313787
- Title: False Data Injection Attack Detection in Edge-based Smart Metering Networks with Federated Learning
- Title(参考訳): False Data Injection Detection in Edge-based Smart Metering Networks with Federated Learning
- Authors: Md Raihan Uddin, Ratun Rahman, Dinh C. Nguyen,
- Abstract要約: 本稿では、効率的なフェデレート学習フレームワークを開発することにより、新たなプライバシ保存型偽データ注入(FDI)攻撃検出を提案する。
ネットワークエッジに位置する分散エッジサーバは、MLベースのFDI攻撃検出モデルを実行し、トレーニングされたモデルをグリッドオペレータと共有する。
- 参考スコア(独自算出の注目度): 1.2026018242953707
- License:
- Abstract: Smart metering networks are increasingly susceptible to cyber threats, where false data injection (FDI) appears as a critical attack. Data-driven-based machine learning (ML) methods have shown immense benefits in detecting FDI attacks via data learning and prediction abilities. Literature works have mostly focused on centralized learning and deploying FDI attack detection models at the control center, which requires data collection from local utilities like meters and transformers. However, this data sharing may raise privacy concerns due to the potential disclosure of household information like energy usage patterns. This paper proposes a new privacy-preserved FDI attack detection by developing an efficient federated learning (FL) framework in the smart meter network with edge computing. Distributed edge servers located at the network edge run an ML-based FDI attack detection model and share the trained model with the grid operator, aiming to build a strong FDI attack detection model without data sharing. Simulation results demonstrate the efficiency of our proposed FL method over the conventional method without collaboration.
- Abstract(参考訳): スマートな計測ネットワークは、偽データインジェクション(FDI)が重要な攻撃として現れるサイバー脅威の影響を受けやすくなっている。
データ駆動型機械学習(ML)手法は、データ学習と予測能力を通じてFDI攻撃を検出するという大きなメリットを示している。
文献は、主に集中的な学習とFDI攻撃検出モデルをコントロールセンタに展開することに焦点を当てており、メーターやトランスフォーマーといったローカルユーティリティからのデータ収集を必要としている。
しかし、このデータ共有は、エネルギー使用パターンのような家庭情報開示の可能性があるため、プライバシー上の懸念を引き起こす可能性がある。
本稿では,エッジコンピューティングを用いたスマートメータネットワークにおいて,効率的なフェデレーション学習(FL)フレームワークを開発することにより,新たなプライバシ保護型FDI攻撃検出を提案する。
ネットワークエッジに位置する分散エッジサーバは、MLベースのFDI攻撃検出モデルを実行し、トレーニングされたモデルをグリッドオペレータと共有する。
シミュレーションの結果,従来のFFL法に比べ,協調性のないFL法の有効性が示された。
関連論文リスト
- FedMSE: Federated learning for IoT network intrusion detection [0.0]
IoTの台頭によりサイバー攻撃面が拡大し、データ可用性、計算リソース、転送コスト、特にプライバシ保護に関する懸念から、従来の集中型機械学習手法が不十分になった。
Shrink AutoencoderとCentroid One-class Classifier(SAE-CEN)を組み合わせた半教師付きフェデレーション学習モデルを開発した。
このアプローチは,通常のネットワークデータを効果的に表現し,分散戦略における異常を正確に識別することにより侵入検知性能を向上させる。
論文 参考訳(メタデータ) (2024-10-18T02:23:57Z) - Ungeneralizable Examples [70.76487163068109]
学習不能なデータを作成するための現在のアプローチには、小さくて特殊なノイズが組み込まれている。
学習不能データの概念を条件付きデータ学習に拡張し、textbfUntextbf Generalizable textbfExamples (UGEs)を導入する。
UGEは認証されたユーザに対して学習性を示しながら、潜在的なハッカーに対する非学習性を維持している。
論文 参考訳(メタデータ) (2024-04-22T09:29:14Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated Learning(FL)は、エッジネットワークにおける分散デバイスの共同モデルトレーニングに基づく、プライバシ保護のための分散管理フレームワークである。
近年の研究では、FLは敵の例に弱いことが示されており、その性能は著しく低下している。
本研究では,対戦型訓練(AT)フレームワークを用いて,対戦型実例(AE)攻撃に対するFLモデルの堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-05T09:18:29Z) - IT Intrusion Detection Using Statistical Learning and Testbed
Measurements [8.493936898320673]
我々は、ITインフラにおける自動侵入検知、特に攻撃開始の特定の問題について研究する。
隠れマルコフモデル(HMM)、Long Short-Term Memory(LSTM)、Random Forest(RFC)などの統計的学習手法を適用した。
HMMとLSTMの両方が攻撃開始時間、攻撃タイプ、攻撃行動を予測するのに有効であることがわかった。
論文 参考訳(メタデータ) (2024-02-20T15:25:56Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Federated Learning Based Distributed Localization of False Data
Injection Attacks on Smart Grids [5.705281336771011]
偽データインジェクション攻撃(False Data Injection attack, FDIA)は、悪意のあるデータを注入することで、スマート測定デバイスをターゲットにする攻撃の1つである。
本稿では,ハイブリッドディープニューラルネットワークアーキテクチャと組み合わせたフェデレート学習に基づくスキームを提案する。
提案手法をIEEE 57,118,300バスシステムおよび実電力負荷データを用いて広範囲なシミュレーションにより検証した。
論文 参考訳(メタデータ) (2023-06-17T20:29:55Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Towards Heterogeneous Clients with Elastic Federated Learning [45.2715985913761]
フェデレーション学習では、エッジプロセッサやデータウェアハウスなどのデバイスやデータサイロ上で、データをローカルに保ちながら、マシンラーニングモデルをトレーニングする。
本稿では,不均一性に対処する非バイアスアルゴリズムであるElastic Federated Learning (EFL)を提案する。
上流と下流の両方の通信を圧縮する効率的かつ効率的なアルゴリズムである。
論文 参考訳(メタデータ) (2021-06-17T12:30:40Z) - Privacy-Preserving Federated Learning for UAV-Enabled Networks:
Learning-Based Joint Scheduling and Resource Management [45.15174235000158]
無人航空機(UAV)は、データ収集、人工知能(AI)モデルトレーニング、無線通信をサポートする飛行基地局(BS)として機能する。
モデルトレーニングのためにUAVサーバにデバイスの生データを送信するのは現実的ではない。
本稿では,マルチUAV対応ネットワークのための非同期フェデレーション学習フレームワークを開発する。
論文 参考訳(メタデータ) (2020-11-28T18:58:34Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。