The Role of Domain Randomization in Training Diffusion Policies for Whole-Body Humanoid Control
- URL: http://arxiv.org/abs/2411.01349v1
- Date: Sat, 02 Nov 2024 19:33:28 GMT
- Title: The Role of Domain Randomization in Training Diffusion Policies for Whole-Body Humanoid Control
- Authors: Oleg Kaidanov, Firas Al-Hafez, Yusuf Suvari, Boris Belousov, Jan Peters,
- Abstract summary: Policies Diffusion (DPs) have shown impressive results in robotic manipulation.
This paper investigates how dataset diversity and size affect the performance of DPs for humanoid whole-body control.
- Score: 14.36344580057985
- License:
- Abstract: Humanoids have the potential to be the ideal embodiment in environments designed for humans. Thanks to the structural similarity to the human body, they benefit from rich sources of demonstration data, e.g., collected via teleoperation, motion capture, or even using videos of humans performing tasks. However, distilling a policy from demonstrations is still a challenging problem. While Diffusion Policies (DPs) have shown impressive results in robotic manipulation, their applicability to locomotion and humanoid control remains underexplored. In this paper, we investigate how dataset diversity and size affect the performance of DPs for humanoid whole-body control. In a simulated IsaacGym environment, we generate synthetic demonstrations by training Adversarial Motion Prior (AMP) agents under various Domain Randomization (DR) conditions, and we compare DPs fitted to datasets of different size and diversity. Our findings show that, although DPs can achieve stable walking behavior, successful training of locomotion policies requires significantly larger and more diverse datasets compared to manipulation tasks, even in simple scenarios.
Related papers
- Inference-Time Policy Steering through Human Interactions [54.02655062969934]
During inference, humans are often removed from the policy execution loop.
We propose an Inference-Time Policy Steering framework that leverages human interactions to bias the generative sampling process.
Our proposed sampling strategy achieves the best trade-off between alignment and distribution shift.
arXiv Detail & Related papers (2024-11-25T18:03:50Z) - DivDiff: A Conditional Diffusion Model for Diverse Human Motion Prediction [9.447439259813112]
We propose a conditional diffusion-based generative model, called DivDiff, to predict more diverse and realistic human motions.
Specifically, the DivDiff employs DDPM as our backbone and incorporates Discrete Cosine Transform (DCT) and transformer mechanisms.
We design a diversified reinforcement sampling function (DRSF) to enforce human skeletal constraints on the predicted human motions.
arXiv Detail & Related papers (2024-08-16T04:51:32Z) - Movement Primitive Diffusion: Learning Gentle Robotic Manipulation of Deformable Objects [14.446751610174868]
Movement Primitive Diffusion (MPD) is a novel method for imitation learning (IL) in robot-assisted surgery.
MPD combines the versatility of diffusion-based imitation learning (DIL) with the high-quality motion generation capabilities of Probabilistic Dynamic Movement Primitives (ProDMPs)
We evaluate MPD across various simulated and real world robotic tasks on both state and image observations.
arXiv Detail & Related papers (2023-12-15T18:24:28Z) - H-GAP: Humanoid Control with a Generalist Planner [45.50995825122686]
Humanoid Generalist Autoencoding Planner (H-GAP) is a generative model trained on humanoid trajectories derived from human motioncaptured data.
For 56 degrees of freedom humanoid, we empirically demonstrate that H-GAP learns to represent and generate a wide range of motor behaviours.
We also do a series of empirical studies on the scaling properties of H-GAP, showing the potential for performance gains via additional data but not computing.
arXiv Detail & Related papers (2023-12-05T11:40:24Z) - Robust Visual Sim-to-Real Transfer for Robotic Manipulation [79.66851068682779]
Learning visuomotor policies in simulation is much safer and cheaper than in the real world.
However, due to discrepancies between the simulated and real data, simulator-trained policies often fail when transferred to real robots.
One common approach to bridge the visual sim-to-real domain gap is domain randomization (DR)
arXiv Detail & Related papers (2023-07-28T05:47:24Z) - Executing your Commands via Motion Diffusion in Latent Space [51.64652463205012]
We propose a Motion Latent-based Diffusion model (MLD) to produce vivid motion sequences conforming to the given conditional inputs.
Our MLD achieves significant improvements over the state-of-the-art methods among extensive human motion generation tasks.
arXiv Detail & Related papers (2022-12-08T03:07:00Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - DexTransfer: Real World Multi-fingered Dexterous Grasping with Minimal
Human Demonstrations [51.87067543670535]
We propose a robot-learning system that can take a small number of human demonstrations and learn to grasp unseen object poses.
We train a dexterous grasping policy that takes the point clouds of the object as input and predicts continuous actions to grasp objects from different initial robot states.
The policy learned from our dataset can generalize well on unseen object poses in both simulation and the real world.
arXiv Detail & Related papers (2022-09-28T17:51:49Z) - Learning Latent Traits for Simulated Cooperative Driving Tasks [10.009803620912777]
We build a framework capable of capturing a compact latent representation of the human in terms of their behavior and preferences.
We then build a lightweight simulation environment, HMIway-env, for modelling one form of distracted driving behavior.
We finally use this environment to quantify both the ability to discriminate drivers and the effectiveness of intervention policies.
arXiv Detail & Related papers (2022-07-20T02:27:18Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.