論文の概要: Use Digital Twins to Support Fault Diagnosis From System-level Condition-monitoring Data
- arxiv url: http://arxiv.org/abs/2411.01360v1
- Date: Sat, 02 Nov 2024 20:35:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:27:38.201259
- Title: Use Digital Twins to Support Fault Diagnosis From System-level Condition-monitoring Data
- Title(参考訳): ディジタルツインを用いたシステムレベルのコンディションモニタリングデータによる故障診断支援
- Authors: Killian Mc Court, Xavier Mc Court, Shijia Du, Zhiguo Zeng,
- Abstract要約: 本稿では,データ駆動型故障診断モデルの開発を支援するために,ディジタルツインを提案する。
提案手法は実世界のロボットシステム上で評価される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Deep learning models have created great opportunities for data-driven fault diagnosis but they require large amount of labeled failure data for training. In this paper, we propose to use a digital twin to support developing data-driven fault diagnosis model to reduce the amount of failure data used in the training process. The developed fault diagnosis models are also able to diagnose component-level failures based on system-level condition-monitoring data. The proposed framework is evaluated on a real-world robot system. The results showed that the deep learning model trained by digital twins is able to diagnose the locations and modes of 9 faults/failure from $4$ different motors. However, the performance of the model trained by a digital twin can still be improved, especially when the digital twin model has some discrepancy with the real system.
- Abstract(参考訳): ディープラーニングモデルは、データ駆動型障害診断の絶好の機会を生み出しましたが、トレーニングには大量のラベル付き障害データが必要です。
本稿では,デジタルツインを用いて,データ駆動型故障診断モデルの構築を支援し,トレーニングプロセスで使用する故障データの量を削減することを提案する。
開発した故障診断モデルは、システムレベルの状態監視データに基づいて、コンポーネントレベルの障害を診断することも可能である。
提案手法は実世界のロボットシステム上で評価される。
その結果、デジタル双生児によって訓練されたディープラーニングモデルは、4ドルのモーターから9の障害/障害の位置とモードを診断できることがわかった。
しかし,デジタル双生児モデルと実システムとの相違がある場合,デジタル双生児モデルの性能は改善される。
関連論文リスト
- DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
より単純な教師付き学習信号と自己教師付き学習信号で訓練した生成的アプローチが,現在のベンチマークにおいて優れた結果が得られることを示す。
The proposed Transformer-based generative network, named DDxT, autoregressive produce a set of possible pathology,, i. DDx, and predicts the real pathology using a neural network。
論文 参考訳(メタデータ) (2023-12-02T22:57:25Z) - Active Foundational Models for Fault Diagnosis of Electrical Motors [0.5999777817331317]
電気モーターの故障検出と診断は、産業システムの安全かつ信頼性の高い運転を保証する上で最も重要である。
マシン故障診断のための既存のデータ駆動ディープラーニングアプローチは、大量のラベル付きサンプルに大きく依存している。
ラベル付きサンプルを少ない量で活用する基礎モデルに基づくアクティブラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-27T03:25:12Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
本研究では, 軸受破壊機構の因果性を学ぶために, 因果解離隠れマルコフモデル (CDHM) を提案する。
具体的には、時系列データをフル活用し、振動信号を断層関連要因と断層関連要因に段階的に分解する。
アプリケーションの範囲を広げるために、学習された非絡み合った表現を他の作業環境に転送するために、教師なしのドメイン適応を採用する。
論文 参考訳(メタデータ) (2023-08-06T05:58:45Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Learning From High-Dimensional Cyber-Physical Data Streams for
Diagnosing Faults in Smart Grids [4.616703548353371]
サイバー物理電力システムにおける故障診断は、データ品質に影響される。
これらのシステムは、過剰な計算コストでシステムを過大評価する大量のデータを生成する。
本稿では,機能工学が上記の課題を緩和する効果について述べる。
論文 参考訳(メタデータ) (2023-03-15T01:21:50Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
人為的なシステムのレジリエンスを、予期せぬ事象に対して向上させるためのエンドツーエンドのフレームワークを実証する。
このフレームワークは物理ベースのデジタルツインモデルと,リアルタイム故障診断,予後,再構成を行う3つのモジュールに基づいている。
論文 参考訳(メタデータ) (2022-08-30T20:16:17Z) - Deep Learning and Handheld Augmented Reality Based System for Optimal
Data Collection in Fault Diagnostics Domain [0.0]
本稿では,最小限のデータを用いて故障診断を行う新しいヒューマン・マシン・インタラクション・フレームワークを提案する。
必要なデータの最小化は、障害の診断におけるデータ駆動モデルの実践可能性を高める。
提案するフレームワークは,各障害条件のインスタンスが1つしかない新しいデータセットに対して,100%以上の精度とリコールを提供する。
論文 参考訳(メタデータ) (2022-06-15T19:15:26Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
データ駆動型故障診断・隔離方式は, 燃料供給システムにおける故障とセンサ測定のために, 明確に開発されている。
モデルは機械学習の分類器を使用してトレーニングされ、トレーニングされた障害シナリオのセットをリアルタイムで検出する。
提案手法の利点, 性能, 性能を実証し, 実証するために, いくつかのシミュレーション実験を行った。
論文 参考訳(メタデータ) (2021-10-17T13:42:37Z) - Quick Learning Mechanism with Cross-Domain Adaptation for Intelligent
Fault Diagnosis [11.427019313283997]
本稿では, 可変作業条件下で動作する回転機械の知的故障診断のための高速学習機構を提案する。
本研究では,Net2Net変換による素早い学習法と,新規データの最大平均不一致をキャンセル・最小化するための微調整法を提案する。
提案手法の有効性は,CWRUデータセット,IMSベアリングデータセット,Paderborn大学データセットで実証されている。
論文 参考訳(メタデータ) (2021-03-16T07:24:37Z) - Residual Generation Using Physically-Based Grey-Box Recurrent Neural
Networks For Engine Fault Diagnosis [1.0152838128195467]
物理モデルと利用可能なトレーニングデータを組み合わせたハイブリッド故障診断手法は有望な結果を示した。
システムモデルの二部グラフ表現を用いて自動残差設計を行い、グレーボックス再帰ニューラルネットワークを設計する。
内燃機関テストベンチからのデータは、機械学習とモデルに基づく故障診断技術を組み合わせる可能性を示すために使用される。
論文 参考訳(メタデータ) (2020-08-11T11:59:48Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。