Signer-Optimal Multiple-Time Post-Quantum Hash-Based Signature for Heterogeneous IoT Systems
- URL: http://arxiv.org/abs/2411.01380v1
- Date: Sat, 02 Nov 2024 23:11:16 GMT
- Title: Signer-Optimal Multiple-Time Post-Quantum Hash-Based Signature for Heterogeneous IoT Systems
- Authors: Kiarash Sedghighadikolaei, Attila A. Yavuz, Saif E. Nouma,
- Abstract summary: Existing NIST-PQC standards are costlier than their conventional counterparts and unsuitable for resource-limited IoTs.
We propose a new multiple-time hash-based signature called Maximum Utilization Multiple HORS (MUM-HORS)
Our experiments confirm up to 40x better utilization with the same signing capacity (220 messages, 128-bit security) compared to multiple-time HORS.
- Score: 1.9185059111021852
- License:
- Abstract: Heterogeneous Internet of Things (IoTs) harboring resource-limited devices like wearable sensors are essential for next-generation networks. Ensuring the authentication and integrity of security-sensitive telemetry in these applications is vital. Digital signatures provide scalable authentication with non-repudiation and public verifiability, making them essential tools for IoTs. However, emerging quantum computers necessitate post-quantum (PQ) secure solutions, yet existing NIST-PQC standards are costlier than their conventional counterparts and unsuitable for resource-limited IoTs. There is a significant need for lightweight PQ-secure digital signatures that respect the resource constraints of low-end IoTs. We propose a new multiple-time hash-based signature called Maximum Utilization Multiple HORS (MUM-HORS) that offers PQ security, short signatures, fast signing, and high key utilization for an extended lifespan. MUM-HORS addresses the inefficiency and key loss issues of HORS in offline/online settings by introducing compact key management data structures and optimized resistance to weak-message attacks. We tested MUM-HORS on two embedded platforms (ARM Cortex A-72 and 8-bit AVR ATmega2560) and commodity hardware. Our experiments confirm up to 40x better utilization with the same signing capacity (2^20 messages, 128-bit security) compared to multiple-time HORS while achieving 2x and 156-2463x faster signing than conventional-secure and NIST PQ-secure schemes, respectively, on an ARM Cortex. These features make MUM-HORS ideal multiple-time PQ-secure signature for heterogeneous IoTs.
Related papers
- Quantum-Safe Hybrid Key Exchanges with KEM-Based Authentication [2.102973349909511]
In PQCrypto 2023, Bruckner, Ramacher and Striecks proposed a novel hybrid AKE (HAKE) protocol, dubbed Muckle+.
Muckle# uses post-quantum key-encapsulating mechanisms for implicit authentication inspired by recent works in the area of Transport Layer Security (TLS) protocols.
arXiv Detail & Related papers (2024-11-06T16:28:17Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Quantum digital signature based on single-qubit without a trusted third-party [45.41082277680607]
We propose a brand new quantum digital signature protocol without a trusted third party only with qubit technology to further improve the security.
We prove that the protocol has information-theoretical unforgeability. Moreover, it satisfies other important secure properties, including asymmetry, undeniability, and expandability.
arXiv Detail & Related papers (2024-10-17T09:49:29Z) - Lightweight and Resilient Signatures for Cloud-Assisted Embedded IoT Systems [2.156208381257605]
Lightweight and Resilient Signatures with Hardware Assistance (LRSHA) and its Forwardsecure version (FLRSHA)
We create two novel digital signatures called Lightweight and Resilient Signatures with Hardware Assistance (LRSHA) and its Forwardsecure version (FLRSHA)
They offer a nearoptimally efficient signing with small keys and signature sizes.
arXiv Detail & Related papers (2024-09-20T22:43:47Z) - Fast and Post-Quantum Authentication for Real-time Next Generation Networks with Bloom Filter [2.156208381257605]
Traditional cryptosystems must be replaced with post-quantum (PQ) secure ones.
We propose a new signature called Time Valid Probabilistic Data Structure HORS (TVPD-HORS)
TVPD-HORS verification is 2.7x and 5x faster than HORS in high-security and time valid settings.
arXiv Detail & Related papers (2024-09-17T01:13:26Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Lightweight and Scalable Post-Quantum Authentication for Medical Internet of Things [1.9185059111021852]
Medical Internet of Things (MIoT) harbors resource-limited medical embedded devices that collect security-sensitive data from users for analysis, monitoring, and diagnosis.
Traditional signatures used in current IoT systems may lack the necessary long-term security and are vulnerable to emerging quantum computer threats.
This paper introduces INFinity-HORS, a lightweight PQ digital signature.
arXiv Detail & Related papers (2023-11-30T16:20:50Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Post-Quantum Hybrid Digital Signatures with Hardware-Support for Digital Twins [2.156208381257605]
Digital Twins (DT) virtually model cyber-physical objects using Internet of Things (IoT) components.
NIST PQC signature standards are exorbitantly costly for low-end IoT without considering forward security.
We create Hardware-assisted cryptographic commitment construct oracle (CCO) that permits verifiers to obtain expensive commitments without signer interaction.
arXiv Detail & Related papers (2023-05-20T23:00:14Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Smart Home, security concerns of IoT [91.3755431537592]
The IoT (Internet of Things) has become widely popular in the domestic environments.
People are renewing their homes into smart homes; however, the privacy concerns of owning many Internet connected devices with always-on environmental sensors remain insufficiently addressed.
Default and weak passwords, cheap materials and hardware, and unencrypted communication are identified as the principal threats and vulnerabilities of IoT devices.
arXiv Detail & Related papers (2020-07-06T10:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.