論文の概要: TPOT: Topology Preserving Optimal Transport in Retinal Fundus Image Enhancement
- arxiv url: http://arxiv.org/abs/2411.01403v1
- Date: Sun, 03 Nov 2024 02:04:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:17.991793
- Title: TPOT: Topology Preserving Optimal Transport in Retinal Fundus Image Enhancement
- Title(参考訳): TPOT : 網膜基底画像強調における最適輸送のためのトポロジー
- Authors: Xuanzhao Dong, Wenhui Zhu, Xin Li, Guoxin Sun, Yi Su, Oana M. Dumitrascu, Yalin Wang,
- Abstract要約: 持続性図の差を最小限に抑えて血管構造を規則化する訓練パラダイムを提案する。
得られたフレームワークをTPOT(Topology Preserving Optimal Transport)と呼ぶ。
大規模データセットを用いた実験結果から,提案手法の優位性を示した。
- 参考スコア(独自算出の注目度): 16.84367978693017
- License:
- Abstract: Retinal fundus photography enhancement is important for diagnosing and monitoring retinal diseases. However, early approaches to retinal image enhancement, such as those based on Generative Adversarial Networks (GANs), often struggle to preserve the complex topological information of blood vessels, resulting in spurious or missing vessel structures. The persistence diagram, which captures topological features based on the persistence of topological structures under different filtrations, provides a promising way to represent the structure information. In this work, we propose a topology-preserving training paradigm that regularizes blood vessel structures by minimizing the differences of persistence diagrams. We call the resulting framework Topology Preserving Optimal Transport (TPOT). Experimental results on a large-scale dataset demonstrate the superiority of the proposed method compared to several state-of-the-art supervised and unsupervised techniques, both in terms of image quality and performance in the downstream blood vessel segmentation task. The code is available at https://github.com/Retinal-Research/TPOT.
- Abstract(参考訳): 網膜基底撮影の増強は網膜疾患の診断とモニタリングに重要である。
しかしながら、GAN(Generative Adversarial Networks)のような初期の網膜画像強調へのアプローチは、しばしば血管の複雑なトポロジカルな情報を保存するのに苦労し、急激なまたは欠落した血管構造をもたらす。
異なる濾過条件下でのトポロジ的構造の持続性に基づいてトポロジ的特徴をキャプチャする永続化図は、構造情報を表現するための有望な方法を提供する。
本研究では,持続性図の差を最小限に抑え,血管構造を規則化するトポロジ保存トレーニングパラダイムを提案する。
このフレームワークをTPOT(Topology Preserving Optimal Transport)と呼ぶ。
大規模データセットを用いた実験結果から, 下流血管分割作業における画質, 性能の両面から, 最先端の監視・教師なし手法と比較して, 提案手法の優位性を示した。
コードはhttps://github.com/Retinal-Research/TPOTで公開されている。
関連論文リスト
- Deep Angiogram: Trivializing Retinal Vessel Segmentation [1.8479315677380455]
本研究では,無関係な特徴をフィルタリングし,深部血管造影という潜像を合成するコントラスト型変分自動エンコーダを提案する。
合成ネットワークの一般化性は、画像コントラストとノイズの特徴の変動に敏感なモデルを実現するコントラスト損失によって改善される。
論文 参考訳(メタデータ) (2023-07-01T06:13:10Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
本稿では,より高速でリアルなOCTA合成のために,空間コロニー化に基づく網膜血管網の軽量なシミュレーションを行う。
本研究では,3つの公開データセットに対する定量的および定性的実験において,提案手法の優れたセグメンテーション性能を示す。
論文 参考訳(メタデータ) (2023-06-19T14:01:47Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - RAVIR: A Dataset and Methodology for the Semantic Segmentation and
Quantitative Analysis of Retinal Arteries and Veins in Infrared Reflectance
Imaging [7.316426736150123]
Infrared Reflectance (IR) 画像における網膜動脈と静脈のセグメンテーションのための新しいデータセット RAVIR を提案する。
本稿では,網膜動脈と静脈のセマンティックセグメンテーションのための,新しい深層学習手法を提案する。
本実験は,SegRAVIRの有効性を検証し,最先端モデルと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2022-03-28T17:30:29Z) - Parametric Scaling of Preprocessing assisted U-net Architecture for
Improvised Retinal Vessel Segmentation [1.3869502085838448]
本稿では,形態素前処理と拡張U-netアーキテクチャを併用した画像強調手法を提案する。
ROC曲線 (>0.9762) と分類精度 (>95.47%) の領域において、領域内の他のアルゴリズムと比較して顕著な改善が得られた。
論文 参考訳(メタデータ) (2022-03-18T15:26:05Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Hierarchical Deep Network with Uncertainty-aware Semi-supervised
Learning for Vessel Segmentation [58.45470500617549]
本稿では,注目機構が血管全体に誘導される低コントラストキャピラリー領域を局在させる階層的なディープネットワークを提案する。
提案手法は,底部画像における網膜動脈/静脈の分画とCT画像における肝門/肝血管の分画のベンチマークにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-05-31T06:55:43Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z) - Dense Residual Network for Retinal Vessel Segmentation [8.778525346264466]
走査型レーザー眼鏡視下網膜像において,血管の分画を効果的に行う方法を提案する。
U-Net,「機能マップの再利用」,残差学習に触発され,DRNetと呼ばれる高密度残差ネットワーク構造を提案する。
本手法は,データ拡張を伴わずとも最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-04-07T20:42:13Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。