TPOT: Topology Preserving Optimal Transport in Retinal Fundus Image Enhancement
- URL: http://arxiv.org/abs/2411.01403v1
- Date: Sun, 03 Nov 2024 02:04:35 GMT
- Title: TPOT: Topology Preserving Optimal Transport in Retinal Fundus Image Enhancement
- Authors: Xuanzhao Dong, Wenhui Zhu, Xin Li, Guoxin Sun, Yi Su, Oana M. Dumitrascu, Yalin Wang,
- Abstract summary: We propose a training paradigm that regularizes blood vessel structures by minimizing the differences of persistence diagrams.
We call the resulting framework Topology Preserving Optimal Transport (TPOT)
Experimental results on a large-scale dataset demonstrate the superiority of the proposed method compared to several state-of-the-art supervised and unsupervised techniques.
- Score: 16.84367978693017
- License:
- Abstract: Retinal fundus photography enhancement is important for diagnosing and monitoring retinal diseases. However, early approaches to retinal image enhancement, such as those based on Generative Adversarial Networks (GANs), often struggle to preserve the complex topological information of blood vessels, resulting in spurious or missing vessel structures. The persistence diagram, which captures topological features based on the persistence of topological structures under different filtrations, provides a promising way to represent the structure information. In this work, we propose a topology-preserving training paradigm that regularizes blood vessel structures by minimizing the differences of persistence diagrams. We call the resulting framework Topology Preserving Optimal Transport (TPOT). Experimental results on a large-scale dataset demonstrate the superiority of the proposed method compared to several state-of-the-art supervised and unsupervised techniques, both in terms of image quality and performance in the downstream blood vessel segmentation task. The code is available at https://github.com/Retinal-Research/TPOT.
Related papers
- Deep Angiogram: Trivializing Retinal Vessel Segmentation [1.8479315677380455]
We propose a contrastive variational auto-encoder that can filter out irrelevant features and synthesize a latent image, named deep angiogram.
The generalizability of the synthetic network is improved by the contrastive loss that makes the model less sensitive to variations of image contrast and noisy features.
arXiv Detail & Related papers (2023-07-01T06:13:10Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - RAVIR: A Dataset and Methodology for the Semantic Segmentation and
Quantitative Analysis of Retinal Arteries and Veins in Infrared Reflectance
Imaging [7.316426736150123]
We present a novel dataset, dubbed RAVIR, for the semantic segmentation of Retinal Arteries and Veins in Infrared Reflectance (IR) imaging.
We propose a novel deep learning-based methodology, denoted as SegRAVIR, for the semantic segmentation of retinal arteries and veins.
Our experiments validate the effectiveness of SegRAVIR and demonstrate its superior performance in comparison to state-of-the-art models.
arXiv Detail & Related papers (2022-03-28T17:30:29Z) - Parametric Scaling of Preprocessing assisted U-net Architecture for
Improvised Retinal Vessel Segmentation [1.3869502085838448]
We present an image enhancement technique based on the morphological preprocessing coupled with a scaled U-net architecture.
A significant improvement as compared to the other algorithms in the domain, in terms of the area under ROC curve (>0.9762) and classification accuracy (>95.47%) are evident from the results.
arXiv Detail & Related papers (2022-03-18T15:26:05Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Hierarchical Deep Network with Uncertainty-aware Semi-supervised
Learning for Vessel Segmentation [58.45470500617549]
We propose a hierarchical deep network where an attention mechanism localizes the low-contrast capillary regions guided by the whole vessels.
The proposed method achieves the state-of-the-art performance in the benchmarks of both retinal artery/vein segmentation in fundus images and liver portal/hepatic vessel segmentation in CT images.
arXiv Detail & Related papers (2021-05-31T06:55:43Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z) - Dense Residual Network for Retinal Vessel Segmentation [8.778525346264466]
We propose an efficient method to segment blood vessels in Scanning Laser Ophthalmoscopy retinal images.
Inspired by U-Net, "feature map reuse" and residual learning, we propose a deep dense residual network structure called DRNet.
Our method achieves the state-of-the-art performance even without data augmentation.
arXiv Detail & Related papers (2020-04-07T20:42:13Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.