論文の概要: Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services
- arxiv url: http://arxiv.org/abs/2411.01458v1
- Date: Sun, 03 Nov 2024 07:01:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:49:09.890270
- Title: Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services
- Title(参考訳): エッジ可能なAI生成コンテンツサービスのための2時間モデルキャッシュとリソース割り当て
- Authors: Zhang Liu, Hongyang Du, Xiangwang Hou, Lianfen Huang, Seyyedali Hosseinalipour, Dusit Niyato, Khaled Ben Letaief,
- Abstract要約: Generative AI(GenAI)は、カスタマイズされたパーソナライズされたAI生成コンテンツ(AIGC)サービスを可能にするトランスフォーメーション技術として登場した。
これらのサービスは数十億のパラメータを持つGenAIモデルの実行を必要とし、リソース制限の無線エッジに重大な障害を生じさせる。
我々は、AIGC品質とレイテンシメトリクスのトレードオフをバランスさせるために、AIGCサービスのジョイントモデルキャッシングとリソースアロケーションの定式化を導入する。
- 参考スコア(独自算出の注目度): 55.0337199834612
- License:
- Abstract: Generative AI (GenAI) has emerged as a transformative technology, enabling customized and personalized AI-generated content (AIGC) services. In this paper, we address challenges of edge-enabled AIGC service provisioning, which remain underexplored in the literature. These services require executing GenAI models with billions of parameters, posing significant obstacles to resource-limited wireless edge. We subsequently introduce the formulation of joint model caching and resource allocation for AIGC services to balance a trade-off between AIGC quality and latency metrics. We obtain mathematical relationships of these metrics with the computational resources required by GenAI models via experimentation. Afterward, we decompose the formulation into a model caching subproblem on a long-timescale and a resource allocation subproblem on a short-timescale. Since the variables to be solved are discrete and continuous, respectively, we leverage a double deep Q-network (DDQN) algorithm to solve the former subproblem and propose a diffusion-based deep deterministic policy gradient (D3PG) algorithm to solve the latter. The proposed D3PG algorithm makes an innovative use of diffusion models as the actor network to determine optimal resource allocation decisions. Consequently, we integrate these two learning methods within the overarching two-timescale deep reinforcement learning (T2DRL) algorithm, the performance of which is studied through comparative numerical simulations.
- Abstract(参考訳): Generative AI(GenAI)は、カスタマイズされたパーソナライズされたAI生成コンテンツ(AIGC)サービスを可能にするトランスフォーメーション技術として登場した。
本稿では,エッジ対応型AIGCサービス提供の課題に対処する。
これらのサービスは数十億のパラメータを持つGenAIモデルの実行を必要とし、リソース制限の無線エッジに重大な障害を生じさせる。
その後、AIGCの品質とレイテンシのメトリクスのトレードオフをバランスさせるために、AIGCサービスのジョイントモデルキャッシングとリソースアロケーションの定式化を導入します。
我々は、これらのメトリクスとGenAIモデルに必要な計算資源との数学的関係を実験により得る。
その後, モデルキャッシングサブプロブレムを長期スケールで, 資源割り当てサブプロブレムを短期スケールで分割する。
解いた変数はそれぞれ離散的かつ連続的であるため、従来のサブプロブレムを解くためにDDQN(Double Deep Q-network)アルゴリズムを利用し、後者を解くために拡散に基づくDeep Deterministic Policy gradient(D3PG)アルゴリズムを提案する。
提案したD3PGアルゴリズムは,最適な資源配分決定を決定するために,アクターネットワークとして拡散モデルを革新的に利用する。
その結果,これら2つの学習手法を2時間大深部強化学習(T2DRL)アルゴリズムに統合し,その性能を比較数値シミュレーションにより検討した。
関連論文リスト
- Resource-Efficient Generative AI Model Deployment in Mobile Edge Networks [15.958822667638405]
エッジ上の利用可能なリソースの不足は、生成AIモデルをデプロイする上で大きな課題を生じさせる。
我々は、エッジ上に生成するAIモデルのデプロイメントを適切に管理することを目的とした、協調的なエッジクラウドフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-09T03:17:28Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Offloading and Quality Control for AI Generated Content Services in 6G Mobile Edge Computing Networks [18.723955271182007]
本稿では, 逆拡散段階における拡散モデルのオフロード決定, 計算時間, 拡散ステップに対する共同最適化アルゴリズムを提案する。
実験結果から,提案アルゴリズムはベースラインよりも優れた継手最適化性能が得られることが示された。
論文 参考訳(メタデータ) (2023-12-11T08:36:27Z) - Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks [68.00382171900975]
無線エッジネットワークでは、不正に生成されたコンテンツの送信はネットワークリソースを不要に消費する可能性がある。
我々は、AIGC-as-a-serviceの概念を示し、エッジネットワークにAをデプロイする際の課題について議論する。
最適なASP選択のための深層強化学習可能なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-09T09:30:23Z) - Graph Reinforcement Learning for Radio Resource Allocation [13.290246410488727]
我々は,無線通信における多くの問題に固有の2種類のリレーショナル先行性を活用するために,グラフ強化学習を利用する。
グラフ強化学習フレームワークを体系的に設計するために,まず状態行列を状態グラフに変換する方法を提案する。
次に,所望の置換特性を満たすグラフニューラルネットワークの汎用手法を提案する。
論文 参考訳(メタデータ) (2022-03-08T08:02:54Z) - Wireless Resource Management in Intelligent Semantic Communication
Networks [15.613654766345702]
ISC対応ヘテロジニアスネットワーク(ISC-HetNet)におけるユーザアソシエーション(UA)と帯域幅割り当ての問題に対処する。
目的を達成するためのプログラミング手法と、UAとBAの最適性に到達するための第2段階のアルゴリズムを含む2段階の解を提案する。
論文 参考訳(メタデータ) (2022-02-15T18:28:28Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
パーティショニングエッジ学習(PARTEL)は、無線ネットワークにおいてよく知られた分散学習手法であるパラメータサーバトレーニングを実装している。
本稿では、いくつかの補助変数を導入してParticleELを用いてトレーニングできるディープニューラルネットワーク(DNN)モデルについて考察する。
論文 参考訳(メタデータ) (2020-10-08T15:27:50Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。