Efficient Medical Image Retrieval Using DenseNet and FAISS for BIRADS Classification
- URL: http://arxiv.org/abs/2411.01473v1
- Date: Sun, 03 Nov 2024 08:14:31 GMT
- Title: Efficient Medical Image Retrieval Using DenseNet and FAISS for BIRADS Classification
- Authors: MD Shaikh Rahman, Feiroz Humayara, Syed Maudud E Rabbi, Muhammad Mahbubur Rashid,
- Abstract summary: We propose an approach to medical image retrieval using DenseNet and FAISS.
DenseNet is well-suited for feature extraction in complex medical images.
FAISS enables efficient handling of high-dimensional data in large-scale datasets.
- Score: 0.0
- License:
- Abstract: That datasets that are used in todays research are especially vast in the medical field. Different types of medical images such as X-rays, MRI, CT scan etc. take up large amounts of space. This volume of data introduces challenges like accessing and retrieving specific images due to the size of the database. An efficient image retrieval system is essential as the database continues to grow to save time and resources. In this paper, we propose an approach to medical image retrieval using DenseNet for feature extraction and use FAISS for similarity search. DenseNet is well-suited for feature extraction in complex medical images and FAISS enables efficient handling of high-dimensional data in large-scale datasets. Unlike existing methods focused solely on classification accuracy, our method prioritizes both retrieval speed and diagnostic relevance, addressing a critical gap in real-time case comparison for radiologists. We applied the classification of breast cancer images using the BIRADS system. We utilized DenseNet's powerful feature representation and FAISSs efficient indexing capabilities to achieve high precision and recall in retrieving relevant images for diagnosis. We experimented on a dataset of 2006 images from the Categorized Digital Database for Low Energy and Subtracted Contrast Enhanced Spectral Mammography (CDD-CESM) images available on The Cancer Imaging Archive (TCIA). Our method outperforms conventional retrieval techniques, achieving a precision of 80% at k=5 for BIRADS classification. The dataset includes annotated CESM images and medical reports, providing a comprehensive foundation for our research.
Related papers
- Private, Efficient and Scalable Kernel Learning for Medical Image Analysis [1.7999333451993955]
OKRA (Orthonormal K-fRAmes) is a novel randomized encoding-based approach for kernel-based machine learning.
It significantly enhances scalability and speed compared to current state-of-the-art solutions.
arXiv Detail & Related papers (2024-10-21T10:03:03Z) - On Validation of Search & Retrieval of Tissue Images in Digital Pathology [0.0]
Medical images play a crucial role in modern healthcare by providing vital information for diagnosis, treatment planning, and disease monitoring.
The technological advancements have exponentially increased the volume and complexity of medical images.
Content-Based Image Retrieval (CBIR) systems address this need by searching and retrieving images based on visual content.
arXiv Detail & Related papers (2024-08-02T20:55:45Z) - Object Detection for Automated Coronary Artery Using Deep Learning [0.0]
In our paper, we utilize the object detection method on X-ray angiography images to precisely identify the location of coronary artery stenosis.
This model enables automatic and real-time detection of stenosis locations, assisting in the crucial and sensitive decision-making process.
arXiv Detail & Related papers (2023-12-19T13:14:52Z) - Building RadiologyNET: Unsupervised annotation of a large-scale
multimodal medical database [0.4915744683251151]
The usage of machine learning in medical diagnosis and treatment has witnessed significant growth in recent years.
However, the availability of large annotated image datasets remains a major obstacle since the process of annotation is time-consuming and costly.
This paper explores how to automatically annotate a database of medical radiology images with regard to their semantic similarity.
arXiv Detail & Related papers (2023-07-27T13:00:33Z) - Medical Image Retrieval via Nearest Neighbor Search on Pre-trained Image
Features [15.331765570210479]
Nearest neighbor search (NNS) aims to locate the points in high-dimensional space that is closest to the query point.
This paper proposes DenseLinkSearch, an effective and efficient algorithm that searches and retrieves relevant images from heterogeneous sources of medical images.
We extensively tested the proposed NNS approach and compared the performance with state-of-the-art NNS approaches on benchmark datasets and our created medical image datasets.
arXiv Detail & Related papers (2022-10-05T17:21:11Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
Vision Transformers (ViTs) have not been applied to this task despite their high classification performance on generic images.
ViTs do not rely on convolutions but on patch-based self-attention and in contrast to CNNs, no prior knowledge of local connectivity is present.
Our results show that while the performance between ViTs and CNNs is on par with a small benefit for ViTs, DeiTs outperform the former if a reasonably large data set is available for training.
arXiv Detail & Related papers (2022-08-17T09:07:45Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
This work introduces a general pre-processing step for chest x-ray input into machine learning algorithms.
A modified Y-Net architecture based on the VGG11 encoder is used to simultaneously learn geometric orientation and segmentation of radiographs.
Results were evaluated by expert clinicians, with acceptable geometry in 95.8% and annotation mask in 96.2%, compared to 27.0% and 34.9% respectively in control images.
arXiv Detail & Related papers (2020-05-08T02:16:17Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.