Object Detection for Automated Coronary Artery Using Deep Learning
- URL: http://arxiv.org/abs/2312.12135v2
- Date: Tue, 30 Apr 2024 14:43:21 GMT
- Title: Object Detection for Automated Coronary Artery Using Deep Learning
- Authors: Hadis Keshavarz, Hossein Sadr,
- Abstract summary: In our paper, we utilize the object detection method on X-ray angiography images to precisely identify the location of coronary artery stenosis.
This model enables automatic and real-time detection of stenosis locations, assisting in the crucial and sensitive decision-making process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the era of digital medicine, medical imaging serves as a widespread technique for early disease detection, with a substantial volume of images being generated and stored daily in electronic patient records. X-ray angiography imaging is a standard and one of the most common methods for rapidly diagnosing coronary artery diseases. The notable achievements of recent deep learning algorithms align with the increased use of electronic health records and diagnostic imaging. Deep neural networks, leveraging abundant data, advanced algorithms, and powerful computational capabilities, prove highly effective in the analysis and interpretation of images. In this context, Object detection methods have become a promising approach, particularly through convolutional neural networks (CNN), streamlining medical image analysis by eliminating manual feature extraction. This allows for direct feature extraction from images, ensuring high accuracy in results. Therefore, in our paper, we utilized the object detection method on X-ray angiography images to precisely identify the location of coronary artery stenosis. As a result, this model enables automatic and real-time detection of stenosis locations, assisting in the crucial and sensitive decision-making process for healthcare professionals.
Related papers
- A novel approach towards the classification of Bone Fracture from Musculoskeletal Radiography images using Attention Based Transfer Learning [0.0]
We deploy an attention-based transfer learning model to detect bone fractures in X-ray scans.
Our model achieves a state-of-the-art accuracy of more than 90% in fracture classification.
arXiv Detail & Related papers (2024-10-18T19:07:24Z) - Deep Learning Applications in Medical Image Analysis: Advancements, Challenges, and Future Directions [0.0]
Recent breakthroughs in deep learning, a subset of artificial intelligence, have markedly revolutionized the analysis of medical pictures.
CNNs have demonstrated remarkable proficiency in autonomously learning features from multidimensional medical pictures.
These models have been utilized across multiple medical disciplines, including pathology, radiology, ophthalmology, and cardiology.
arXiv Detail & Related papers (2024-10-18T02:57:14Z) - Case Studies on X-Ray Imaging, MRI and Nuclear Imaging [0.0]
We will focus on how AI-based approaches, particularly the use of Convolutional Neural Networks (CNN), can assist in disease detection through medical imaging technology.
CNN is a commonly used approach for image analysis due to its ability to extract features from raw input images.
arXiv Detail & Related papers (2023-06-03T09:05:35Z) - Artificial Intelligence for Automatic Detection and Classification
Disease on the X-Ray Images [0.0]
This work presents rapid detection of diseases in the lung using the efficient Deep learning pre-trained RepVGG algorithm.
We are applying Artificial Intelligence technology for automatic highlighted detection of affected areas of people's lungs.
arXiv Detail & Related papers (2022-11-14T03:51:12Z) - Improving Chest X-Ray Classification by RNN-based Patient Monitoring [0.34998703934432673]
We analyze how information about diagnosis can improve CNN-based image classification models.
We show that a model trained on additional patient history information outperforms a model trained without the information by a significant margin.
arXiv Detail & Related papers (2022-10-28T11:47:15Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Follow My Eye: Using Gaze to Supervise Computer-Aided Diagnosis [54.60796004113496]
We demonstrate that the eye movement of radiologists reading medical images can be a new form of supervision to train the DNN-based computer-aided diagnosis (CAD) system.
We record the tracks of the radiologists' gaze when they are reading images.
The gaze information is processed and then used to supervise the DNN's attention via an Attention Consistency module.
arXiv Detail & Related papers (2022-04-06T08:31:05Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.