Sample-Efficient Alignment for LLMs
- URL: http://arxiv.org/abs/2411.01493v2
- Date: Sat, 09 Nov 2024 12:22:19 GMT
- Title: Sample-Efficient Alignment for LLMs
- Authors: Zichen Liu, Changyu Chen, Chao Du, Wee Sun Lee, Min Lin,
- Abstract summary: We study methods for efficiently aligning large language models (LLMs) with human preferences given budgeted online feedback.
We introduce a unified algorithm based on Thompson sampling and highlight its applications in two distinct LLM alignment scenarios.
The results demonstrate that SEA achieves highly sample-efficient alignment with oracle's preferences, outperforming recent active exploration methods for LLMs.
- Score: 29.477421976548015
- License:
- Abstract: We study methods for efficiently aligning large language models (LLMs) with human preferences given budgeted online feedback. We first formulate the LLM alignment problem in the frame of contextual dueling bandits. This formulation, subsuming recent paradigms such as online RLHF and online DPO, inherently quests for sample-efficient algorithms that incorporate online active exploration. Leveraging insights from bandit theory, we introduce a unified algorithm based on Thompson sampling and highlight its applications in two distinct LLM alignment scenarios. The practical agent that efficiently implements this algorithm, named SEA (Sample-Efficient Alignment), is empirically validated through extensive experiments across three model scales (1B, 2.8B, 6.9B) and three preference learning algorithms (DPO, IPO, SLiC). The results demonstrate that SEA achieves highly sample-efficient alignment with oracle's preferences, outperforming recent active exploration methods for LLMs. Additionally, we release the implementation of SEA together with an efficient codebase designed for online alignment of LLMs, aiming to accelerate future research in this field.
Related papers
- Sequential Large Language Model-Based Hyper-Parameter Optimization [0.0]
This study introduces SLLMBO, an innovative framework that leverages Large Language Models (LLMs)
By addressing limitations in recent fully LLM-based methods, SLLMBO achieves more robust optimization.
benchmarking evaluates multiple LLMs, including GPT-3.5-turbo, GPT-4o, Claude-Sonnet-3.5, and Gemini-1.5-flash.
arXiv Detail & Related papers (2024-10-27T00:50:30Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
We propose an optimization-based structural pruning on Large-Language Models.
We learn the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model.
Our method operates for 2.7 hours with around 35GB memory for the 13B models on a single A100 GPU.
arXiv Detail & Related papers (2024-06-15T09:31:03Z) - LOLA: LLM-Assisted Online Learning Algorithm for Content Experiments [2.2021543101231167]
Modern media firms require automated and efficient methods to identify content that is most engaging and appealing to users.
We first investigate the ability of three pure-LLM approaches to identify the catchiest headline: prompt-based methods, embedding-based methods, and fine-tuned open-source LLMs.
We then introduce the LLM-Assisted Online Learning Algorithm (LOLA), a novel framework that integrates Large Language Models (LLMs) with adaptive experimentation to optimize content delivery.
arXiv Detail & Related papers (2024-06-03T07:56:58Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Faster and Lighter LLMs: A Survey on Current Challenges and Way Forward [29.81212051279456]
Recent advancements in model compression and system-level optimization methods aim to enhance LLM inference.
This survey offers an overview of these methods, emphasizing recent developments.
arXiv Detail & Related papers (2024-02-02T06:29:34Z) - Human-Instruction-Free LLM Self-Alignment with Limited Samples [64.69906311787055]
We propose an algorithm that can self-align large language models (LLMs) iteratively without active human involvement.
Unlike existing works, our algorithm relies on neither human-crafted instructions nor labeled rewards, significantly reducing human involvement.
We show that our method can unlock the LLMs' self-generalization ability to perform alignment with near-zero human supervision.
arXiv Detail & Related papers (2024-01-06T14:00:12Z) - Large Language Models are Not Stable Recommender Systems [45.941176155464824]
We introduce exploratory research and find consistent patterns of positional bias in large language models (LLMs)
We propose a Bayesian probabilistic framework, STELLA (Stable LLM for Recommendation), which involves a two-stage pipeline.
Our framework can capitalize on existing pattern information to calibrate instability of LLMs, and enhance recommendation performance.
arXiv Detail & Related papers (2023-12-25T14:54:33Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
We propose an easy-to-implement online reinforcement learning (online RL) framework called textttMEX.
textttMEX integrates estimation and planning components while balancing exploration exploitation automatically.
It can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards.
arXiv Detail & Related papers (2023-05-29T17:25:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.