論文の概要: Educational Effects in Mathematics: Conditional Average Treatment Effect depending on the Number of Treatments
- arxiv url: http://arxiv.org/abs/2411.01498v1
- Date: Sun, 03 Nov 2024 09:39:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:49:47.385151
- Title: Educational Effects in Mathematics: Conditional Average Treatment Effect depending on the Number of Treatments
- Title(参考訳): 数学における教育効果:治療数による条件平均処理効果
- Authors: Tomoko Nagai, Takayuki Okuda, Tomoya Nakamura, Yuichiro Sato, Yusuke Sato, Kensaku Kinjo, Kengo Kawamura, Shin Kikuta, Naoto Kumano-go,
- Abstract要約: 本研究では,高学院大学学術支援センターの教育効果について検討した。
T-learnerを用いて,センターの対面支援プログラムの条件平均治療効果(CATE)を評価した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study examines the educational effect of the Academic Support Center at Kogakuin University. Following the initial assessment, it was suggested that group bias had led to an underestimation of the Center's true impact. To address this issue, the authors applied the theory of causal inference. By using T-learner, the conditional average treatment effect (CATE) of the Center's face-to-face (F2F) personal assistance program was evaluated. Extending T-learner, the authors produced a new CATE function that depends on the number of treatments (F2F sessions) and used the estimated function to predict the CATE performance of F2F assistance.
- Abstract(参考訳): 本研究では,高学院大学学術支援センターの教育効果について検討した。
最初の評価の後、集団バイアスがセンターの真の影響を過小評価したことが示唆された。
この問題に対処するため、著者らは因果推論の理論を適用した。
T-learnerを用いて,センターの対面支援プログラム(F2F)の条件平均治療効果(CATE)を評価した。
著者らはT-learnerを拡張して、治療数(F2Fセッション)に依存する新しいCATE関数を作成し、F2FアシストのCATE性能を予測するために推定関数を使用した。
関連論文リスト
- Structure-agnostic Optimality of Doubly Robust Learning for Treatment
Effect Estimation [27.630223763160515]
平均処理効果推定は因果推論において最も中心的な問題であり、多くの分野に適用できる。
我々は最近導入された統計的下界の構造非依存の枠組みを採用し、ニュアンス関数に構造的特性を生じさせない。
平均治療効果 (ATE) と平均治療効果 (ATT) の両方に対して, 有意かつ広く用いられている2重頑健性評価器の統計的最適性を証明する。
論文 参考訳(メタデータ) (2024-02-22T04:03:32Z) - Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
結果に対する治療の平均因果効果(ACE)を評価することは、しばしば観察研究における要因の相違によって引き起こされる課題を克服することを伴う。
本稿では,目標最小損失推定理論に基づいて,正面基準の新たな推定手法を提案する。
本研究では,早期学業成績が今後の年収に与える影響を明らかにするために,これらの推定装置の適用性を示す。
論文 参考訳(メタデータ) (2023-12-15T22:04:53Z) - Doubly Robust Proximal Causal Learning for Continuous Treatments [56.05592840537398]
本稿では,カーネルベースの2倍頑健な因果学習推定器を提案する。
オラクル形式は影響関数の一貫した近似であることを示す。
次に、平均二乗誤差の観点から総合収束解析を行う。
論文 参考訳(メタデータ) (2023-09-22T12:18:53Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Optimizing Two-way Partial AUC with an End-to-end Framework [154.47590401735323]
ROC曲線のエリア(AUC)は、機械学習にとって重要な指標である。
最近の研究は、TPAUCが既存のPartial AUCメトリクスと本質的に矛盾していることを示している。
本論文では,この新指標を最適化するための最初の試行について述べる。
論文 参考訳(メタデータ) (2022-06-23T12:21:30Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
フェデレートラーニング(FL)は医用画像解析に広く用いられている。
FLのパフォーマンスは、多発性硬化症(MS)病変セグメンテーションタスクに制限される。
2つの効果的な再重み付け機構によるFLMS病変分割フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-03T14:06:03Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
ランダム化制御試験(RCT)における治療効果の客観的評価における中心的な障害は、その性能をテストするための基礎的真理(または検証セット)の欠如である。
この課題に対処するための新しいクロスバリデーションのような方法論を提供する。
本手法は,Amazonサプライチェーンに実装された709RCTに対して評価を行った。
論文 参考訳(メタデータ) (2021-12-14T17:53:01Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Continuous Treatment Recommendation with Deep Survival Dose Response
Function [3.705291460388999]
臨床生存データを用いた環境下での継続的治療推奨問題に対する一般的な定式化を提案する。
DeepSDRFによる処理効果の推定により,選択バイアスを補正したレコメンデータアルゴリズムの開発が可能となる。
医学的文脈における観察データによる継続的な治療効果に因果モデルが使用されるのは、これが初めてである。
論文 参考訳(メタデータ) (2021-08-24T00:19:04Z) - Causal Estimation with Functional Confounders [24.54466899641308]
因果推論は、無知と肯定性の2つの基本的な仮定に依存します。
真共起値が観測データの関数として表現できる場合の因果推論について検討する。
この設定では、不可知性は満たされるが、肯定性は侵害され、因果推論は一般に不可能である。
論文 参考訳(メタデータ) (2021-02-17T02:16:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。