Combining Multi-Objective Bayesian Optimization with Reinforcement Learning for TinyML
- URL: http://arxiv.org/abs/2305.14109v2
- Date: Thu, 6 Jun 2024 07:51:21 GMT
- Title: Combining Multi-Objective Bayesian Optimization with Reinforcement Learning for TinyML
- Authors: Mark Deutel, Georgios Kontes, Christopher Mutschler, Jürgen Teich,
- Abstract summary: We propose a novel strategy for deploying Deep Neural Networks on microcontrollers (TinyML) based on Multi-Objective Bayesian optimization (MOBOpt)
Our methodology aims at efficiently finding tradeoffs between a DNN's predictive accuracy, memory consumption on a given target system, and computational complexity.
- Score: 4.2019872499238256
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deploying Deep Neural Networks (DNNs) on microcontrollers (TinyML) is a common trend to process the increasing amount of sensor data generated at the edge, but in practice, resource and latency constraints make it difficult to find optimal DNN candidates. Neural Architecture Search (NAS) is an excellent approach to automate this search and can easily be combined with DNN compression techniques commonly used in TinyML. However, many NAS techniques are not only computationally expensive, especially hyperparameter optimization (HPO), but also often focus on optimizing only a single objective, e.g., maximizing accuracy, without considering additional objectives such as memory consumption or computational complexity of a DNN, which are key to making deployment at the edge feasible. In this paper, we propose a novel NAS strategy for TinyML based on Multi-Objective Bayesian optimization (MOBOpt) and an ensemble of competing parametric policies trained using Augmented Random Search (ARS) Reinforcement Learning (RL) agents. Our methodology aims at efficiently finding tradeoffs between a DNN's predictive accuracy, memory consumption on a given target system, and computational complexity. Our experiments show that we outperform existing MOBOpt approaches consistently on different data sets and architectures such as ResNet-18 and MobileNetV3.
Related papers
- Energy-Aware FPGA Implementation of Spiking Neural Network with LIF Neurons [0.5243460995467893]
Spiking Neural Networks (SNNs) stand out as a cutting-edge solution for TinyML.
This paper presents a novel SNN architecture based on the 1st Order Leaky Integrate-and-Fire (LIF) neuron model.
A hardware-friendly LIF design is also proposed, and implemented on a Xilinx Artix-7 FPGA.
arXiv Detail & Related papers (2024-11-03T16:42:10Z) - A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
Spiking Neural Networks (SNNs) mimic the information-processing mechanisms of the human brain and are highly energy-efficient.
We propose a new approach named LitE-SNN that incorporates both spatial and temporal compression into the automated network design process.
arXiv Detail & Related papers (2024-01-26T05:23:11Z) - Sparse-DySta: Sparsity-Aware Dynamic and Static Scheduling for Sparse
Multi-DNN Workloads [65.47816359465155]
Running multiple deep neural networks (DNNs) in parallel has become an emerging workload in both edge devices.
We propose Dysta, a novel scheduler that utilizes both static sparsity patterns and dynamic sparsity information for the sparse multi-DNN scheduling.
Our proposed approach outperforms the state-of-the-art methods with up to 10% decrease in latency constraint violation rate and nearly 4X reduction in average normalized turnaround time.
arXiv Detail & Related papers (2023-10-17T09:25:17Z) - Enhancing Neural Architecture Search with Multiple Hardware Constraints
for Deep Learning Model Deployment on Tiny IoT Devices [17.919425885740793]
We propose a novel approach to incorporate multiple constraints into so-called Differentiable NAS optimization methods.
We show that, with a single search, it is possible to reduce memory and latency by 87.4% and 54.2%, respectively.
arXiv Detail & Related papers (2023-10-11T06:09:14Z) - Compact: Approximating Complex Activation Functions for Secure Computation [15.801954240019176]
Compact produces piece-wise approximations of complex AFs to enable their efficient use with state-of-the-art MPC techniques.
We show that Compact incurs negligible accuracy loss while being 2x-5x more efficient than state-of-the-art approaches for DNN models with large number of hidden layers.
arXiv Detail & Related papers (2023-09-09T02:44:41Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - PLiNIO: A User-Friendly Library of Gradient-based Methods for
Complexity-aware DNN Optimization [3.460496851517031]
PLiNIO is an open-source library implementing a comprehensive set of state-of-the-art DNN design automation techniques.
We show that PLiNIO achieves up to 94.34% memory reduction for a 1% accuracy drop compared to a baseline architecture.
arXiv Detail & Related papers (2023-07-18T07:11:14Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.