Next Best View For Point-Cloud Model Acquisition: Bayesian Approximation and Uncertainty Analysis
- URL: http://arxiv.org/abs/2411.01734v1
- Date: Mon, 04 Nov 2024 01:32:09 GMT
- Title: Next Best View For Point-Cloud Model Acquisition: Bayesian Approximation and Uncertainty Analysis
- Authors: Madalena Caldeira, Plinio Moreno,
- Abstract summary: This work adapts the point-net-based neural network for Next-Best-View (PC-NBV)
It incorporates dropout layers into the model's architecture, thus allowing the computation of the uncertainty estimate associated with its predictions.
The aim of the work is to improve the network's accuracy in correctly predicting the next best viewpoint.
- Score: 2.07180164747172
- License:
- Abstract: The Next Best View problem is a computer vision problem widely studied in robotics. To solve it, several methodologies have been proposed over the years. Some, more recently, propose the use of deep learning models. Predictions obtained with the help of deep learning models naturally have some uncertainty associated with them. Despite this, the standard models do not allow for their quantification. However, Bayesian estimation theory contributed to the demonstration that dropout layers allow to estimate prediction uncertainty in neural networks. This work adapts the point-net-based neural network for Next-Best-View (PC-NBV). It incorporates dropout layers into the model's architecture, thus allowing the computation of the uncertainty estimate associated with its predictions. The aim of the work is to improve the network's accuracy in correctly predicting the next best viewpoint, proposing a way to make the 3D reconstruction process more efficient. Two uncertainty measurements capable of reflecting the prediction's error and accuracy, respectively, were obtained. These enabled the reduction of the model's error and the increase in its accuracy from 30\% to 80\% by identifying and disregarding predictions with high values of uncertainty. Another method that directly uses these uncertainty metrics to improve the final prediction was also proposed. However, it showed very residual improvements.
Related papers
- Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
Recent studies reveal that deep neural networks (DNNs) are prone to making overconfident predictions.
We propose a new train-time calibration method, which features a simple, plug-and-play auxiliary loss known as multi-class alignment of predictive mean confidence and predictive certainty (MACC)
Our method achieves state-of-the-art calibration performance for both in-domain and out-domain predictions.
arXiv Detail & Related papers (2023-09-06T00:56:24Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - Autoregressive Uncertainty Modeling for 3D Bounding Box Prediction [63.3021778885906]
3D bounding boxes are a widespread intermediate representation in many computer vision applications.
We propose methods for leveraging our autoregressive model to make high confidence predictions and meaningful uncertainty measures.
We release a simulated dataset, COB-3D, which highlights new types of ambiguity that arise in real-world robotics applications.
arXiv Detail & Related papers (2022-10-13T23:57:40Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Learning Uncertainty with Artificial Neural Networks for Improved
Remaining Time Prediction of Business Processes [0.15229257192293202]
This paper is the first to apply these techniques to predictive process monitoring.
We found that they contribute towards more accurate predictions and work quickly.
This leads to many interesting applications, enables an earlier adoption of prediction systems with smaller datasets and fosters a better cooperation with humans.
arXiv Detail & Related papers (2021-05-12T10:18:57Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - A Novel Regression Loss for Non-Parametric Uncertainty Optimization [7.766663822644739]
Quantification of uncertainty is one of the most promising approaches to establish safe machine learning.
One of the most commonly used approaches so far is Monte Carlo dropout, which is computationally cheap and easy to apply in practice.
We propose a new objective, referred to as second-moment loss ( UCI), to address this issue.
arXiv Detail & Related papers (2021-01-07T19:12:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.