論文の概要: Silver medal Solution for Image Matching Challenge 2024
- arxiv url: http://arxiv.org/abs/2411.01851v1
- Date: Mon, 04 Nov 2024 07:05:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:43:10.411083
- Title: Silver medal Solution for Image Matching Challenge 2024
- Title(参考訳): 2024年の画像マッチングチャレンジのための銀メダルソリューション
- Authors: Yian Wang,
- Abstract要約: Image Matching Challenge 2024は、さまざまな画像集合から3Dマップを構築することに焦点を当てたコンペティションである。
このプロジェクトでは,複数の高度なテクニックを組み合わせたパイプライン手法が開発されている。
この手法は民間のリーダーボードで0.167の優れたスコアを得た。
- 参考スコア(独自算出の注目度): 1.5819779409953552
- License:
- Abstract: Image Matching Challenge 2024 is a competition focused on building 3D maps from diverse image sets, requiring participants to solve fundamental computer vision challenges in image matching across varying angles, lighting, and seasonal changes. This project develops a Pipeline method that combines multiple advanced techniques: using pre-trained EfficientNet-B7 for initial feature extraction and cosine distance-based image pair filtering, employing both KeyNetAffNetHardNet and SuperPoint for keypoint feature extraction, utilizing AdaLAM and SuperGlue for keypoint matching, and finally applying Pycolmap for 3D spatial analysis. The methodology achieved an excellent score of 0.167 on the private leaderboard, with experimental results demonstrating that the combination of KeyNetAffNetHardNet and SuperPoint provides significant advantages in keypoint detection and matching, particularly when dealing with challenging variations in surface texture and environmental conditions that typically degrade traditional algorithm performance.
- Abstract(参考訳): Image Matching Challenge 2024は、さまざまな画像セットから3Dマップを構築することに焦点を当てたコンペである。
本稿では,初期特徴抽出に事前学習したEfficientNet-B7,キーポイント特徴抽出にKeyNetAffNetHardNetとSuperPointを用い,キーポイントマッチングにAdaLAMとSuperGlueを用い,最後に3次元空間解析にPycolmapを適用する。
実験の結果,KeyNetAffNetHardNetとSuperPointの組み合わせはキーポイントの検出とマッチングにおいて,特に従来のアルゴリズム性能を低下させる表面テクスチャと環境条件の困難な変化に対処する上で,大きなメリットをもたらすことがわかった。
関連論文リスト
- Enhancing Soccer Camera Calibration Through Keypoint Exploitation [0.0]
本稿では,高品質な点対を得るという課題に対処する多段階パイプラインを提案する。
本手法は,直線交点や直線-円錐交点,円錐上の点,その他の幾何学的特徴を活用することにより,校正に利用できる点の数を大幅に増加させる。
我々は,サッカー放送カメラのキャリブレーション・データセットの最大化について検討し,サッカーネットカメラチャレンジ2023でトップの地位を確保した。
論文 参考訳(メタデータ) (2024-10-09T20:01:14Z) - Learning Better Keypoints for Multi-Object 6DoF Pose Estimation [1.0878040851638]
グラフネットワークをトレーニングして、同様に分散された投票で分散されたキーポイントのセットを選択する。
これらの投票は、キーポイントの位置の証拠を蓄積するために回帰ネットワークによって学習され、より正確に回帰することができる。
実験では、KeyGNetが選択したキーポイントが、テストされた7つのデータセットのすべての評価指標の精度を改善した。
論文 参考訳(メタデータ) (2023-08-15T15:11:13Z) - Enhancing Deformable Local Features by Jointly Learning to Detect and
Describe Keypoints [8.390939268280235]
局所特徴抽出は、画像マッチングや検索といった重要なタスクに対処するためのコンピュータビジョンにおける標準的なアプローチである。
鍵点を共同で検出・記述する新しい変形認識ネットワークであるDALFを提案する。
提案手法は、変形可能なオブジェクト検索と、非剛性な3次元表面登録という、2つの実世界のアプリケーションの性能を向上させる。
論文 参考訳(メタデータ) (2023-04-02T18:01:51Z) - Efficient and Accurate Co-Visible Region Localization with Matching
Key-Points Crop (MKPC): A Two-Stage Pipeline for Enhancing Image Matching
Performance [2.714583452862024]
画像マッチングのためのMKPCアルゴリズムを提案する。
MKPCは、非常に効率と精度のよい視認可能な領域である臨界領域を特定し、提案し、収穫する。
また、画像マッチングモデルや組み合わせと互換性のある、画像マッチングのための一般的な2段階パイプラインを提案する。
論文 参考訳(メタデータ) (2023-03-24T04:18:13Z) - MonoGraspNet: 6-DoF Grasping with a Single RGB Image [73.96707595661867]
6-DoFロボットの把握は長続きするが未解決の問題だ。
近年の手法では3次元ネットワークを用いて深度センサから幾何的把握表現を抽出している。
我々はMonoGraspNetと呼ばれるRGBのみの6-DoFグルーピングパイプラインを提案する。
論文 参考訳(メタデータ) (2022-09-26T21:29:50Z) - Paint and Distill: Boosting 3D Object Detection with Semantic Passing
Network [70.53093934205057]
ライダーやカメラセンサーからの3Dオブジェクト検出タスクは、自動運転に不可欠である。
本研究では,既存のライダーベース3D検出モデルの性能向上を図るために,SPNetという新しいセマンティックパスフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-12T12:35:34Z) - VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and
Stereo Data Fusion [62.24001258298076]
VPFNetは、ポイントクラウドとイメージデータを仮想のポイントで巧みに調整し集約する新しいアーキテクチャである。
当社のVPFNetは,KITTIテストセットで83.21%の中等度3D AP,91.86%中等度BEV APを達成し,2021年5月21日以来の1位となった。
論文 参考訳(メタデータ) (2021-11-29T08:51:20Z) - P2-Net: Joint Description and Detection of Local Features for Pixel and
Point Matching [78.18641868402901]
この研究は、2D画像と3D点雲の微粒な対応を確立するための取り組みである。
画素領域と点領域の固有情報変動を緩和するために,新しい損失関数と組み合わせた超広帯域受信機構を設計した。
論文 参考訳(メタデータ) (2021-03-01T14:59:40Z) - Collaboration among Image and Object Level Features for Image
Colourisation [25.60139324272782]
画像のカラー化は不適切な問題であり、入力データムに存在するコンテキストとオブジェクトインスタンスに依存する複数の正しいソリューションがある。
従来のアプローチは、強力なユーザーインタラクションを必要とするか、画像レベル(コンテキスト)機能を学ぶために畳み込みニューラルネットワーク(CNN)の能力を利用して、この問題を攻撃しました。
コンボリューションによって得られる画像レベルの特徴とカプセルによってキャプチャされるオブジェクトレベルの特徴を分離する,UCapsNetという単一のネットワークを提案する。
そして,異なる層間の接続をスキップすることで,これらの分離要因間の協調を強制し,高品質で再現可能な画像彩色を実現する。
論文 参考訳(メタデータ) (2021-01-19T11:48:12Z) - GSNet: Joint Vehicle Pose and Shape Reconstruction with Geometrical and
Scene-aware Supervision [65.13980934546957]
GSNet(Geometric and Scene-aware Network)と名付けられた新しいエンドツーエンドフレームワークを提案する。
共同で6DoFのポーズを推定し、都会のストリートビューから詳細な3Dカー形状を再構築する。
我々は,最大マルチタスクApolloCar3Dベンチマーク上でGSNetを評価し,定量的かつ定性的に最先端の性能を達成する。
論文 参考訳(メタデータ) (2020-07-26T13:05:55Z) - Towards High Performance Human Keypoint Detection [87.1034745775229]
文脈情報は人体構成や見えないキーポイントを推論する上で重要な役割を担っている。
そこで我々は,空間とチャネルのコンテキスト情報を効率的に統合するカスケードコンテキストミキサー(CCM)を提案する。
CCMの表現能力を最大化するために、我々は、強陰性な人検出マイニング戦略と共同訓練戦略を開発する。
検出精度を向上させるために,キーポイント予測を後処理するためのいくつかのサブピクセル改良手法を提案する。
論文 参考訳(メタデータ) (2020-02-03T02:24:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。