Causal Discovery and Classification Using Lempel-Ziv Complexity
- URL: http://arxiv.org/abs/2411.01881v2
- Date: Thu, 14 Nov 2024 16:17:40 GMT
- Title: Causal Discovery and Classification Using Lempel-Ziv Complexity
- Authors: Dhruthi, Nithin Nagaraj, Harikrishnan N B,
- Abstract summary: We introduce a novel causality measure and a distance metric derived from Lempel-Ziv complexity.
We evaluate the effectiveness of the causality-based decision tree and the distance-based decision tree.
- Score: 2.7309692684728617
- License:
- Abstract: Inferring causal relationships in the decision-making processes of machine learning algorithms is a crucial step toward achieving explainable Artificial Intelligence (AI). In this research, we introduce a novel causality measure and a distance metric derived from Lempel-Ziv (LZ) complexity. We explore how the proposed causality measure can be used in decision trees by enabling splits based on features that most strongly \textit{cause} the outcome. We further evaluate the effectiveness of the causality-based decision tree and the distance-based decision tree in comparison to a traditional decision tree using Gini impurity. While the proposed methods demonstrate comparable classification performance overall, the causality-based decision tree significantly outperforms both the distance-based decision tree and the Gini-based decision tree on datasets generated from causal models. This result indicates that the proposed approach can capture insights beyond those of classical decision trees, especially in causally structured data. Based on the features used in the LZ causal measure based decision tree, we introduce a causal strength for each features in the dataset so as to infer the predominant causal variables for the occurrence of the outcome.
Related papers
- GPTree: Towards Explainable Decision-Making via LLM-powered Decision Trees [0.0]
GPTree is a novel framework combining explainability of decision trees with the advanced reasoning capabilities of LLMs.
Our decision tree achieved a 7.8% precision rate for identifying "unicorn" startups at the inception stage of a startup.
arXiv Detail & Related papers (2024-11-13T00:14:09Z) - FoLDTree: A ULDA-Based Decision Tree Framework for Efficient Oblique Splits and Feature Selection [6.087464679182875]
LDATree and FoLDTree integrate Uncorrelated Linear Discriminant Analysis (ULDA) and Forward ULDA into a decision tree structure.
LDATree and FoLDTree consistently outperform axis-orthogonal and other oblique decision tree methods.
arXiv Detail & Related papers (2024-10-30T16:03:51Z) - Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning [53.241569810013836]
We propose a novel framework that utilizes large language models (LLMs) to identify effective feature generation rules.
We use decision trees to convey this reasoning information, as they can be easily represented in natural language.
OCTree consistently enhances the performance of various prediction models across diverse benchmarks.
arXiv Detail & Related papers (2024-06-12T08:31:34Z) - Learning accurate and interpretable decision trees [27.203303726977616]
We develop approaches to design decision tree learning algorithms given repeated access to data from the same domain.
We study the sample complexity of tuning prior parameters in Bayesian decision tree learning, and extend our results to decision tree regression.
We also study the interpretability of the learned decision trees and introduce a data-driven approach for optimizing the explainability versus accuracy trade-off using decision trees.
arXiv Detail & Related papers (2024-05-24T20:10:10Z) - Construction of Decision Trees and Acyclic Decision Graphs from Decision
Rule Systems [0.0]
We study the complexity of constructing decision trees and acyclic decision graphs representing decision trees from decision rule systems.
We discuss the possibility of not building the entire decision tree, but describing the computation path in this tree for the given input.
arXiv Detail & Related papers (2023-05-02T18:40:48Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - Decision Machines: Congruent Decision Trees [0.0]
We propose Decision Machines, which embed Boolean tests into a binary vector space and represent the tree structure as a matrices.
We explore the congruence of decision trees and attention mechanisms, opening new avenues for optimizing decision trees and potentially enhancing their predictive power.
arXiv Detail & Related papers (2021-01-27T12:23:24Z) - Learning Causal Semantic Representation for Out-of-Distribution
Prediction [125.38836464226092]
We propose a Causal Semantic Generative model (CSG) based on a causal reasoning so that the two factors are modeled separately.
We show that CSG can identify the semantic factor by fitting training data, and this semantic-identification guarantees the boundedness of OOD generalization error.
arXiv Detail & Related papers (2020-11-03T13:16:05Z) - Rectified Decision Trees: Exploring the Landscape of Interpretable and
Effective Machine Learning [66.01622034708319]
We propose a knowledge distillation based decision trees extension, dubbed rectified decision trees (ReDT)
We extend the splitting criteria and the ending condition of the standard decision trees, which allows training with soft labels.
We then train the ReDT based on the soft label distilled from a well-trained teacher model through a novel jackknife-based method.
arXiv Detail & Related papers (2020-08-21T10:45:25Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.