FoLDTree: A ULDA-Based Decision Tree Framework for Efficient Oblique Splits and Feature Selection
- URL: http://arxiv.org/abs/2410.23147v1
- Date: Wed, 30 Oct 2024 16:03:51 GMT
- Title: FoLDTree: A ULDA-Based Decision Tree Framework for Efficient Oblique Splits and Feature Selection
- Authors: Siyu Wang,
- Abstract summary: LDATree and FoLDTree integrate Uncorrelated Linear Discriminant Analysis (ULDA) and Forward ULDA into a decision tree structure.
LDATree and FoLDTree consistently outperform axis-orthogonal and other oblique decision tree methods.
- Score: 6.087464679182875
- License:
- Abstract: Traditional decision trees are limited by axis-orthogonal splits, which can perform poorly when true decision boundaries are oblique. While oblique decision tree methods address this limitation, they often face high computational costs, difficulties with multi-class classification, and a lack of effective feature selection. In this paper, we introduce LDATree and FoLDTree, two novel frameworks that integrate Uncorrelated Linear Discriminant Analysis (ULDA) and Forward ULDA into a decision tree structure. These methods enable efficient oblique splits, handle missing values, support feature selection, and provide both class labels and probabilities as model outputs. Through evaluations on simulated and real-world datasets, LDATree and FoLDTree consistently outperform axis-orthogonal and other oblique decision tree methods, achieving accuracy levels comparable to the random forest. The results highlight the potential of these frameworks as robust alternatives to traditional single-tree methods.
Related papers
- Causal Discovery and Classification Using Lempel-Ziv Complexity [2.7309692684728617]
We introduce a novel causality measure and a distance metric derived from Lempel-Ziv complexity.
We evaluate the effectiveness of the causality-based decision tree and the distance-based decision tree.
arXiv Detail & Related papers (2024-11-04T08:24:56Z) - Learning accurate and interpretable decision trees [27.203303726977616]
We develop approaches to design decision tree learning algorithms given repeated access to data from the same domain.
We study the sample complexity of tuning prior parameters in Bayesian decision tree learning, and extend our results to decision tree regression.
We also study the interpretability of the learned decision trees and introduce a data-driven approach for optimizing the explainability versus accuracy trade-off using decision trees.
arXiv Detail & Related papers (2024-05-24T20:10:10Z) - Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
We introduce MetaTree, a transformer-based model trained via meta-learning to directly produce strong decision trees.
We fit both greedy decision trees and globally optimized decision trees on a large number of datasets, and train MetaTree to produce only the trees that achieve strong generalization performance.
arXiv Detail & Related papers (2024-02-06T07:40:53Z) - Decision Machines: Congruent Decision Trees [0.0]
We propose Decision Machines, which embed Boolean tests into a binary vector space and represent the tree structure as a matrices.
We explore the congruence of decision trees and attention mechanisms, opening new avenues for optimizing decision trees and potentially enhancing their predictive power.
arXiv Detail & Related papers (2021-01-27T12:23:24Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - Convex Polytope Trees [57.56078843831244]
convex polytope trees (CPT) are proposed to expand the family of decision trees by an interpretable generalization of their decision boundary.
We develop a greedy method to efficiently construct CPT and scalable end-to-end training algorithms for the tree parameters when the tree structure is given.
arXiv Detail & Related papers (2020-10-21T19:38:57Z) - Rectified Decision Trees: Exploring the Landscape of Interpretable and
Effective Machine Learning [66.01622034708319]
We propose a knowledge distillation based decision trees extension, dubbed rectified decision trees (ReDT)
We extend the splitting criteria and the ending condition of the standard decision trees, which allows training with soft labels.
We then train the ReDT based on the soft label distilled from a well-trained teacher model through a novel jackknife-based method.
arXiv Detail & Related papers (2020-08-21T10:45:25Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z) - The Max-Cut Decision Tree: Improving on the Accuracy and Running Time of
Decision Trees [0.0]
The Max-Cut decision tree involves novel modifications to a standard, baseline model of classification decision tree construction, precisely CART Gini.
Our experiments show that this node-based localized PCA can dramatically improve classification, while also significantly decreasing computational time compared to the baseline decision tree.
Results are most significant when evaluated on data sets with higher dimensions, or more classes; which, for the example data set CIFAR-100, enable a 49% improvement in accuracy while reducing CPU time by 94%.
arXiv Detail & Related papers (2020-06-25T00:47:21Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
We present techniques that produce optimal decision trees over a variety of objectives.
We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables.
arXiv Detail & Related papers (2020-06-15T19:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.