Test Automation for Interactive Scenarios via Promptable Traffic Simulation
- URL: http://arxiv.org/abs/2506.01199v2
- Date: Wed, 04 Jun 2025 19:26:05 GMT
- Title: Test Automation for Interactive Scenarios via Promptable Traffic Simulation
- Authors: Augusto Mondelli, Yueshan Li, Alessandro Zanardi, Emilio Frazzoli,
- Abstract summary: We introduce an automated method to generate realistic and safety-critical human behaviors for AV planner evaluation in interactive scenarios.<n>We parameterize complex human behaviors using low-dimensional goal positions, which are then fed into a promptable traffic simulator, ProSim.<n>To automate test generation, we introduce a prompt generation module that explores the goal domain and efficiently identifies safety-critical behaviors using Bayesian optimization.
- Score: 48.240394447516664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous vehicle (AV) planners must undergo rigorous evaluation before widespread deployment on public roads, particularly to assess their robustness against the uncertainty of human behaviors. While recent advancements in data-driven scenario generation enable the simulation of realistic human behaviors in interactive settings, leveraging these models to construct comprehensive tests for AV planners remains an open challenge. In this work, we introduce an automated method to efficiently generate realistic and safety-critical human behaviors for AV planner evaluation in interactive scenarios. We parameterize complex human behaviors using low-dimensional goal positions, which are then fed into a promptable traffic simulator, ProSim, to guide the behaviors of simulated agents. To automate test generation, we introduce a prompt generation module that explores the goal domain and efficiently identifies safety-critical behaviors using Bayesian optimization. We apply our method to the evaluation of an optimization-based planner and demonstrate its effectiveness and efficiency in automatically generating diverse and realistic driving behaviors across scenarios with varying initial conditions.
Related papers
- Safety-Critical Traffic Simulation with Guided Latent Diffusion Model [8.011306318131458]
Safety-critical traffic simulation plays a crucial role in evaluating autonomous driving systems.<n>We propose a guided latent diffusion model (LDM) capable of generating physically realistic and adversarial scenarios.<n>Our work provides an effective tool for realistic safety-critical scenario simulation, paving the way for more robust evaluation of autonomous driving systems.
arXiv Detail & Related papers (2025-05-01T13:33:34Z) - GraphSCENE: On-Demand Critical Scenario Generation for Autonomous Vehicles in Simulation [7.542220697870245]
This work introduces a novel method that generates dynamic temporal scene graphs corresponding to diverse traffic scenarios, on-demand, tailored to user-defined preferences.<n>A temporal Graph Neural Network (GNN) model learns to predict relationships between ego-vehicle agents and static structures, guided by real-world interaction patterns.<n>We render the predicted scenarios in simulation to further demonstrate their effectiveness as testing environments for AV agents.
arXiv Detail & Related papers (2024-10-17T13:02:06Z) - Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving [17.27549891731047]
We improve the reliability of agent behaviors by closed-loop fine-tuning of behavior models with reinforcement learning.
Our method demonstrates improved overall performance, as well as improved targeted metrics such as collision rate.
We present a novel policy evaluation benchmark to directly assess the ability of simulated agents to measure the quality of autonomous vehicle planners.
arXiv Detail & Related papers (2024-09-26T23:40:33Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
We present nuPlan, a real-world motion planning benchmark that captures multi-agent interactions.<n>We learn to model such unique behaviors with BehaviorNet, a graph convolutional neural network (GCNN)<n>We also present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Augmented Driver Behavior Models for High-Fidelity Simulation Study of
Crash Detection Algorithms [2.064612766965483]
We present a simulation platform for a hybrid transportation system that includes both human-driven and automated vehicles.
We decompose the human driving task and offer a modular approach to simulating a large-scale traffic scenario.
We analyze a large driving dataset to extract expressive parameters that would best describe different driving characteristics.
arXiv Detail & Related papers (2022-08-10T19:59:16Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well as future scene structures.
We adopt a novel multi-instance event prediction module to estimate the possible interaction among agents in the ego-centric view.
We design a sequential action sampling strategy to better leverage predicted states on both scene-level and instance-level.
arXiv Detail & Related papers (2021-01-14T22:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.