論文の概要: Fairness-Utilization Trade-off in Wireless Networks with Explainable Kolmogorov-Arnold Networks
- arxiv url: http://arxiv.org/abs/2411.01924v1
- Date: Mon, 04 Nov 2024 09:40:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:48:33.589872
- Title: Fairness-Utilization Trade-off in Wireless Networks with Explainable Kolmogorov-Arnold Networks
- Title(参考訳): 説明可能なコルモゴロフ・アルノルドネットワークを用いた無線ネットワークの公正利用トレードオフ
- Authors: Masoud Shokrnezhad, Hamidreza Mazandarani, Tarik Taleb,
- Abstract要約: 本稿では,ネットワーク利用とユーザ株式のバランスをとるために$alpha$-fairnessを最適化することを目的とした,無線ネットワークにおける電力割り当ての課題に焦点を当てる。
推論コストの低い機械学習モデルのクラスであるKAN(Kolmogorov-Arnold Networks)を利用した新しいアプローチを提案する。
データセットの生成と分散化のために2つのアルゴリズムが提案され、様々なフェアネス目標を達成するための柔軟なフレームワークを提供する。
- 参考スコア(独自算出の注目度): 14.51946231794179
- License:
- Abstract: The effective distribution of user transmit powers is essential for the significant advancements that the emergence of 6G wireless networks brings. In recent studies, Deep Neural Networks (DNNs) have been employed to address this challenge. However, these methods frequently encounter issues regarding fairness and computational inefficiency when making decisions, rendering them unsuitable for future dynamic services that depend heavily on the participation of each individual user. To address this gap, this paper focuses on the challenge of transmit power allocation in wireless networks, aiming to optimize $\alpha$-fairness to balance network utilization and user equity. We introduce a novel approach utilizing Kolmogorov-Arnold Networks (KANs), a class of machine learning models that offer low inference costs compared to traditional DNNs through superior explainability. The study provides a comprehensive problem formulation, establishing the NP-hardness of the power allocation problem. Then, two algorithms are proposed for dataset generation and decentralized KAN training, offering a flexible framework for achieving various fairness objectives in dynamic 6G environments. Extensive numerical simulations demonstrate the effectiveness of our approach in terms of fairness and inference cost. The results underscore the potential of KANs to overcome the limitations of existing DNN-based methods, particularly in scenarios that demand rapid adaptation and fairness.
- Abstract(参考訳): 6G無線ネットワークの出現がもたらす顕著な進歩には,ユーザ送信パワーの効果的な分配が不可欠である。
近年の研究では、この課題に対処するためにDeep Neural Networks(DNN)が採用されている。
しかし、これらの手法は、意思決定を行う際の公平性や計算の非効率性に関する問題にしばしば遭遇し、個々のユーザの参加に大きく依存する将来の動的サービスには不適当である。
このギャップに対処するため,本稿では,ネットワーク利用とユーザ・エクイティのバランスをとるために,$\alpha$-fairnessを最適化することを目的とした,無線ネットワークにおける電力割り当ての課題に焦点を当てた。
本稿では,従来のDNNに比べて推論コストの低い機械学習モデルであるKAN(Kolmogorov-Arnold Networks)を,より優れた説明性によって活用する手法を提案する。
この研究は総合的な問題定式化を提供し、停電問題のNP硬度を確立する。
次に、データセット生成と分散KANトレーニングのための2つのアルゴリズムを提案し、動的6G環境で様々な公正性目標を達成するための柔軟なフレームワークを提供する。
大規模数値シミュレーションは, 提案手法の有効性を, フェアネスと推論コストの観点から示している。
この結果は、特に迅速な適応と公平性を求めるシナリオにおいて、既存のDNNベースの手法の限界を克服するkansの可能性を強調している。
関連論文リスト
- The Robustness of Spiking Neural Networks in Communication and its Application towards Network Efficiency in Federated Learning [6.9569682335746235]
スパイキングニューラルネットワーク(SNN)は最近、組み込みデバイスでのオンチップ学習に多大な関心を集めている。
本稿では,フェデレートラーニングにおける雑音の多いコミュニケーション下でのSNNの本質的ロバスト性について検討する。
FLトレーニングにおける帯域幅の削減を目的とした,TopKスパシフィケーションを用いた新しいフェデレートラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-19T13:37:18Z) - GNN-Based Joint Channel and Power Allocation in Heterogeneous Wireless Networks [9.031738020845586]
本稿では、異種無線ネットワークにおける共同資源配分問題に対処するGNNに基づくアルゴリズムを提案する。
提案アルゴリズムは,従来の最適化アルゴリズムと比較して高い計算効率で良好な性能を実現する。
論文 参考訳(メタデータ) (2024-07-28T04:51:00Z) - Graph Neural Networks-Based User Pairing in Wireless Communication
Systems [0.34410212782758043]
ユーザペアリング問題を効率的に解くために,教師なしグラフニューラルネットワーク(GNN)アプローチを提案する。
提案手法は20dBのSNRにおいて,k平均よりも49%,SUSより95%高い総和率を達成する。
論文 参考訳(メタデータ) (2023-05-14T11:57:42Z) - Graph Neural Networks for Power Allocation in Wireless Networks with
Full Duplex Nodes [10.150768420975155]
ユーザ間の相互干渉のため、無線ネットワークにおける電力割り当て問題はしばしば自明ではない。
グラフグラフニューラルネットワーク(GNN)は、これらの問題に対処するための有望なアプローチとして最近登場し、無線ネットワークの基盤となるトポロジを活用するアプローチである。
論文 参考訳(メタデータ) (2023-03-27T10:59:09Z) - Adaptive Target-Condition Neural Network: DNN-Aided Load Balancing for
Hybrid LiFi and WiFi Networks [19.483289519348315]
機械学習は、複雑性に優しいロードバランシングソリューションを提供する可能性がある。
学習支援のSOTA(State-of-the-art)は,ネットワーク環境が変化すると再学習を必要とする。
適応目標条件ニューラルネットワーク(A-TCNN)と呼ばれる新しいディープニューラルネットワーク(DNN)構造を提案する。
論文 参考訳(メタデータ) (2022-08-09T20:46:13Z) - Learning Resilient Radio Resource Management Policies with Graph Neural
Networks [124.89036526192268]
我々は、ユーザ当たりの最小容量制約でレジリエントな無線リソース管理問題を定式化する。
有限個のパラメータ集合を用いてユーザ選択と電力制御ポリシーをパラメータ化できることを示す。
このような適応により,提案手法は平均レートと5番目のパーセンタイルレートとの良好なトレードオフを実現する。
論文 参考訳(メタデータ) (2022-03-07T19:40:39Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
最適な電力フロー(ACOPF)のソリューションを解決するために、ディープニューラルネットワーク(DNN)を提案します。
提案されたSIDNNは、幅広いOPFスキームと互換性がある。
他のLearning-to-OPFスキームとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-03-27T00:45:23Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
本稿では,自由空間光(FSO)フロントホールネットワークにおける最適資源割り当てについて検討する。
我々は、FSOネットワーク構造を利用するために、ポリシーパラメータ化のためのグラフニューラルネットワーク(GNN)を検討する。
本アルゴリズムは,システムモデルに関する知識が不要なモデルフリーでGNNを訓練するために開発された。
論文 参考訳(メタデータ) (2020-06-26T14:20:48Z) - Deep Learning for Radio Resource Allocation with Diverse
Quality-of-Service Requirements in 5G [53.23237216769839]
本研究では,基地局の最適資源配分ポリシーを近似するディープラーニングフレームワークを開発する。
完全接続ニューラルネットワーク(NN)は,近似誤差とサブキャリア数の量子化誤差により,要求を完全に保証できないことがわかった。
無線チャネルの分布と無線ネットワークにおけるサービスのタイプが定常的でないことを考慮し,非定常的無線ネットワークにおけるNNの更新にディープトランスファー学習を適用した。
論文 参考訳(メタデータ) (2020-03-29T04:48:22Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
本稿では,無線ネットワークにおけるダウンリンク電力制御の問題点について考察する。
コンカレントトランスミッション間の干渉を軽減するために,ネットワークトポロジを活用してグラフニューラルネットワークアーキテクチャを構築する。
次に、教師なし原始対実対実最適化手法を用いて最適電力配分決定を学習する。
論文 参考訳(メタデータ) (2020-02-17T07:54:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。