論文の概要: N-Gram Induction Heads for In-Context RL: Improving Stability and Reducing Data Needs
- arxiv url: http://arxiv.org/abs/2411.01958v1
- Date: Mon, 04 Nov 2024 10:31:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:59.032907
- Title: N-Gram Induction Heads for In-Context RL: Improving Stability and Reducing Data Needs
- Title(参考訳): インコンテキストRLのためのN-Gram誘導ヘッド:安定性の向上とデータ要求の低減
- Authors: Ilya Zisman, Alexander Nikulin, Andrei Polubarov, Nikita Lyubaykin, Vladislav Kurenkov,
- Abstract要約: コンテキスト内学習は、トランスフォーマーのようなモデルが重みを更新することなく、新しいタスクに適応できるようにする。
アルゴリズム蒸留(AD)のような既存のコンテキスト内RL手法では、大きく、慎重にキュレートされたデータセットが要求される。
本研究では,n-gram誘導ヘッドをインコンテキストRLの変換器に統合した。
- 参考スコア(独自算出の注目度): 42.446740732573296
- License:
- Abstract: In-context learning allows models like transformers to adapt to new tasks from a few examples without updating their weights, a desirable trait for reinforcement learning (RL). However, existing in-context RL methods, such as Algorithm Distillation (AD), demand large, carefully curated datasets and can be unstable and costly to train due to the transient nature of in-context learning abilities. In this work we integrated the n-gram induction heads into transformers for in-context RL. By incorporating these n-gram attention patterns, we significantly reduced the data required for generalization - up to 27 times fewer transitions in the Key-to-Door environment - and eased the training process by making models less sensitive to hyperparameters. Our approach not only matches but often surpasses the performance of AD, demonstrating the potential of n-gram induction heads to enhance the efficiency of in-context RL.
- Abstract(参考訳): コンテキスト内学習は、強化学習(RL)に望ましい特徴であるウェイトを更新することなく、トランスフォーマーのようなモデルが、いくつかの例から新しいタスクに適応できるようにする。
しかし、アルゴリズム蒸留(AD)のような既存のコンテキスト内RL手法では、大きく、慎重にキュレートされたデータセットを必要としており、文脈内学習能力の過渡的な性質のため、トレーニングに不安定でコストがかかる。
本研究では,n-gram誘導ヘッドをインコンテキストRLの変換器に統合した。
これらのn-gramの注意パターンを取り入れることで、一般化に必要なデータ(Key-to-Door環境における遷移の最大27倍)を大幅に削減し、ハイパーパラメータに敏感なモデルを提供することで、トレーニングプロセスを緩和しました。
提案手法はADの性能に適合するだけでなく,n-gram誘導ヘッドの可能性を示し,文脈内RLの効率を向上する。
関連論文リスト
- Transformers are Minimax Optimal Nonparametric In-Context Learners [36.291980654891496]
大規模言語モデルのコンテキスト内学習は、いくつかの実証的な例から新しいタスクを学ぶのに驚くほど効果的な方法であることが証明されている。
我々は,ディープニューラルネットワークと1つの線形アテンション層からなる変圧器の近似および一般化誤差境界を開発する。
十分に訓練されたトランスフォーマーは、文脈における最小推定リスクを達成し、改善できることを示す。
論文 参考訳(メタデータ) (2024-08-22T08:02:10Z) - Stop Regressing: Training Value Functions via Classification for
Scalable Deep RL [109.44370201929246]
分類的クロスエントロピーを用いた値関数のトレーニングにより,様々な領域における性能とスケーラビリティが向上することを示す。
例えば、SoftMoEによるAtari 2600ゲームでのシングルタスクRL、大規模ResNetによるAtariでのマルチタスクRL、Q-トランスフォーマーによるロボット操作、検索なしでチェスをプレイする、高容量トランスフォーマーによる言語エージェントWordleタスクなどがある。
論文 参考訳(メタデータ) (2024-03-06T18:55:47Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Solving Continual Offline Reinforcement Learning with Decision Transformer [78.59473797783673]
連続的オフライン強化学習(CORL)は、連続的およびオフライン的な強化学習を組み合わせたものである。
Actor-Critic構造とエクスペリエンス・リプレイ(ER)を取り入れた既存の手法は、分散シフト、低効率、知識共有の弱さに悩まされている。
我々は,マルチヘッドDT (MH-DT) とローランク適応DT (LoRA-DT) を導入し,DTの無視問題を緩和する。
論文 参考訳(メタデータ) (2024-01-16T16:28:32Z) - Enhancing data efficiency in reinforcement learning: a novel imagination
mechanism based on mesh information propagation [0.3729614006275886]
Imagination Mechanism (IM) と呼ばれる新しいメッシュ情報伝達機構を導入する。
IMは、単一のサンプルによって生成された情報を、エピソード間で異なる状態に効果的にブロードキャストすることを可能にする。
汎用性を促進するため,他の広く採用されているRLアルゴリズムにシームレスかつ流動的に統合可能なプラグイン・アンド・プレイモジュールとして機能するIMを拡張した。
論文 参考訳(メタデータ) (2023-09-25T16:03:08Z) - Supervised Pretraining Can Learn In-Context Reinforcement Learning [96.62869749926415]
本稿では,意思決定問題における変換器の文脈内学習能力について検討する。
本稿では,変換器が最適動作を予測する教師付き事前学習法であるDPT(Decision-Pretrained Transformer)を導入,研究する。
事前学習した変換器は、オンラインと保守主義の両方をオフラインで探索することで、コンテキスト内における様々なRL問題の解決に利用できる。
論文 参考訳(メタデータ) (2023-06-26T17:58:50Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
データ拡張(DA)は、ビジュアル強化学習(RL)アルゴリズムのサンプル効率を高める重要な手法である。
サンプル効率のよい視覚的RLを実現する上で, DAのどの属性が有効かは明らかになっていない。
本研究は,DAの属性が有効性に与える影響を評価するための総合的な実験を行う。
論文 参考訳(メタデータ) (2023-05-25T15:46:20Z) - Lean Evolutionary Reinforcement Learning by Multitasking with Importance
Sampling [20.9680985132322]
本稿では,新しいニューロ進化的マルチタスク(NuEMT)アルゴリズムを導入し,一連の補助タスクからターゲット(フル長)RLタスクへ情報を伝達する。
我々は、NuEMTアルゴリズムがデータ-リーン進化RLであり、高価なエージェント-環境相互作用データ要求を減らすことを実証する。
論文 参考訳(メタデータ) (2022-03-21T10:06:16Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
次世代(NextG)ネットワークは、拡張現実(AR)やコネクテッド・自律走行車といった、インターネットの触覚を必要とするアプリケーションをサポートすることが期待されている。
データ駆動アプローチは、現在の運用条件に適応するネットワークの能力を改善することができる。
深部RL(DRL)は複雑な環境においても良好な性能を発揮することが示されている。
論文 参考訳(メタデータ) (2021-12-07T03:13:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。