論文の概要: Modulating State Space Model with SlowFast Framework for Compute-Efficient Ultra Low-Latency Speech Enhancement
- arxiv url: http://arxiv.org/abs/2411.02019v1
- Date: Mon, 04 Nov 2024 12:14:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:45:59.042018
- Title: Modulating State Space Model with SlowFast Framework for Compute-Efficient Ultra Low-Latency Speech Enhancement
- Title(参考訳): 高速超低レイテンシ音声強調のためのSlowFastフレームワークによる状態空間モデルの変調
- Authors: Longbiao Cheng, Ashutosh Pandey, Buye Xu, Tobi Delbruck, Vamsi Krishna Ithapu, Shih-Chii Liu,
- Abstract要約: 深層学習に基づく音声強調(SE)手法は、低レイテンシ要求を満たす必要がある場合、しばしば重要な計算課題に直面する。
本稿では,低遅延化が必要な場合の計算コストの削減を目的としたSlowFastフレームワークを提案する。
- 参考スコア(独自算出の注目度): 23.068529349466456
- License:
- Abstract: Deep learning-based speech enhancement (SE) methods often face significant computational challenges when needing to meet low-latency requirements because of the increased number of frames to be processed. This paper introduces the SlowFast framework which aims to reduce computation costs specifically when low-latency enhancement is needed. The framework consists of a slow branch that analyzes the acoustic environment at a low frame rate, and a fast branch that performs SE in the time domain at the needed higher frame rate to match the required latency. Specifically, the fast branch employs a state space model where its state transition process is dynamically modulated by the slow branch. Experiments on a SE task with a 2 ms algorithmic latency requirement using the Voice Bank + Demand dataset show that our approach reduces computation cost by 70% compared to a baseline single-branch network with equivalent parameters, without compromising enhancement performance. Furthermore, by leveraging the SlowFast framework, we implemented a network that achieves an algorithmic latency of just 60 {\mu}s (one sample point at 16 kHz sample rate) with a computation cost of 100 M MACs/s, while scoring a PESQ-NB of 3.12 and SISNR of 16.62.
- Abstract(参考訳): 深層学習に基づく音声強調法(SE)は、処理するフレーム数が増加するため、低レイテンシ要求を満たす必要がある場合、計算上の重大な課題に直面することが多い。
本稿では,低遅延化が必要な場合の計算コストの削減を目的としたSlowFastフレームワークを提案する。
このフレームワークは、低フレームレートで音響環境を解析する遅い分岐と、必要なフレームレートでSEを実行する高速分岐とから構成される。
具体的には、高速分岐は状態遷移プロセスが遅い分岐によって動的に変調される状態空間モデルを用いる。
音声バンク+デマンドデータセットを用いた2msのアルゴリズム遅延要求を伴うSEタスク実験の結果,提案手法は,等価パラメータを持つベースラインシングルブランチネットワークと比較して計算コストを70%削減するが,性能は向上しない。
さらに,SlowFastフレームワークを利用することで,計算コストが100MMAC/s,PESQ-NBが3.12,SISNRが16.62であったのに対し,SlowFastフレームワークを利用することで,たった60 {\mu}s(サンプルレート16kHzのサンプルポイント)のアルゴリズム遅延を実現するネットワークを実装した。
関連論文リスト
- Accelerating Linear Recurrent Neural Networks for the Edge with Unstructured Sparsity [39.483346492111515]
線形リカレントニューラルネットワークは、推論中に一定のメモリ使用量と時間毎の時間を含む強力な長距離シーケンスモデリングを可能にする。
非構造化空間は、互換性のあるハードウェアプラットフォームによって加速されるときに、計算とメモリの要求を大幅に削減できる魅力的なソリューションを提供する。
非常に疎い線形RNNは、高密度ベースラインよりも高い効率と性能のトレードオフを一貫して達成している。
論文 参考訳(メタデータ) (2025-02-03T13:09:21Z) - Dynamic Frame Interpolation in Wavelet Domain [57.25341639095404]
ビデオフレームは、より流動的な視覚体験のためにフレームレートを上げることができる、重要な低レベルな計算ビジョンタスクである。
既存の手法は、高度なモーションモデルと合成ネットワークを利用することで大きな成功を収めた。
WaveletVFIは、同様の精度を維持しながら最大40%の計算を削減できるため、他の最先端技術に対してより効率的に処理できる。
論文 参考訳(メタデータ) (2023-09-07T06:41:15Z) - Latency-aware Unified Dynamic Networks for Efficient Image Recognition [72.8951331472913]
LAUDNetは動的ネットワークの理論的および実用的な効率ギャップを橋渡しするフレームワークである。
3つの主要な動的パラダイム - 適応型計算、動的層スキップ、動的チャネルスキップ - を統合している。
これにより、V100,3090やTX2 GPUのようなプラットフォーム上で、ResNetのようなモデルの遅延を50%以上削減できる。
論文 参考訳(メタデータ) (2023-08-30T10:57:41Z) - Dynamic Latency for CTC-Based Streaming Automatic Speech Recognition
With Emformer [0.4588028371034407]
効率的な拡張メモリ変換器ブロックと動的遅延学習法を用いたフレームレベルモデルを用いて音声認識のストリーミングを行う。
平均レイテンシは640msであり,テストクリーンでは6.4%,他では3.0%,チャンクワイドトランスでは3.0%の相対的なWER削減を実現している。
論文 参考訳(メタデータ) (2022-03-29T14:31:06Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Architecture Aware Latency Constrained Sparse Neural Networks [35.50683537052815]
本稿では,CNNモデルの作成と高速化を目的として,遅延制約付きスパースフレームワークを設計する。
また,効率的な計算のための新しいスパース畳み込みアルゴリズムを提案する。
我々のシステム・アルゴリズムの共同設計フレームワークは、リソース制約のあるモバイルデバイス上でのネットワークの精度とレイテンシのフロンティアをはるかに向上させることができる。
論文 参考訳(メタデータ) (2021-09-01T03:41:31Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
本稿では,最先端セグメンテーションモデルをMESSネットワークに変換するフレームワークを提案する。
パラメトリド早期出口を用いた特別訓練されたCNNは、より簡単なサンプルの推測時に、その深さに沿って保存する。
接続されたセグメンテーションヘッドの数、配置、アーキテクチャとエグジットポリシーを併用して、デバイス機能とアプリケーション固有の要件に適応する。
論文 参考訳(メタデータ) (2021-06-07T11:37:03Z) - EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware
Multi-Task NLP Inference [82.1584439276834]
BERTのようなトランスフォーマーベースの言語モデルでは、自然言語処理(NLP)タスクの精度が大幅に向上する。
We present EdgeBERT, a in-deepth algorithm- hardware co-design for latency-aware energy optimization for multi-task NLP。
論文 参考訳(メタデータ) (2020-11-28T19:21:47Z) - FastEmit: Low-latency Streaming ASR with Sequence-level Emission
Regularization [78.46088089185156]
ストリーム自動音声認識(ASR)は、仮説化された単語を可能な限り迅速かつ正確に出力することを目的としている。
既存のアプローチでは、シーケンストランスデューサモデルにおいて、トーケン単位またはフレーム単位の確率予測を演算することで、発光遅延をペナルティ化する。
本稿では,訓練用トランスデューサモデルにおいて,シーケンス毎の確率に遅延正規化を直接適用する,FastEmitというシーケンスレベルのエミッション正規化手法を提案する。
論文 参考訳(メタデータ) (2020-10-21T17:05:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。