Addressing Representation Collapse in Vector Quantized Models with One Linear Layer
- URL: http://arxiv.org/abs/2411.02038v1
- Date: Mon, 04 Nov 2024 12:40:18 GMT
- Title: Addressing Representation Collapse in Vector Quantized Models with One Linear Layer
- Authors: Yongxin Zhu, Bocheng Li, Yifei Xin, Linli Xu,
- Abstract summary: Vector Quantization (VQ) is a widely used method for converting continuous representations into discrete codes.
VQ models are often hindered by the problem of representation collapse in the latent space.
We propose textbfSimVQ, a novel method which re parameterizes the code vectors through a linear transformation layer based on a learnable latent basis.
- Score: 10.532262196027752
- License:
- Abstract: Vector Quantization (VQ) is a widely used method for converting continuous representations into discrete codes, which has become fundamental in unsupervised representation learning and latent generative models. However, VQ models are often hindered by the problem of representation collapse in the latent space, which leads to low codebook utilization and limits the scalability of the codebook for large-scale training. Existing methods designed to mitigate representation collapse typically reduce the dimensionality of latent space at the expense of model capacity, which do not fully resolve the core issue. In this study, we conduct a theoretical analysis of representation collapse in VQ models and identify its primary cause as the disjoint optimization of the codebook, where only a small subset of code vectors are updated through gradient descent. To address this issue, we propose \textbf{SimVQ}, a novel method which reparameterizes the code vectors through a linear transformation layer based on a learnable latent basis. This transformation optimizes the \textit{entire linear space} spanned by the codebook, rather than merely updating \textit{the code vector} selected by the nearest-neighbor search in vanilla VQ models. Although it is commonly understood that the multiplication of two linear matrices is equivalent to applying a single linear layer, our approach works surprisingly well in resolving the collapse issue in VQ models with just one linear layer. We validate the efficacy of SimVQ through extensive experiments across various modalities, including image and audio data with different model architectures. Our code is available at \url{https://github.com/youngsheen/SimVQ}.
Related papers
- Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
We present a "line theoremarity" establishing a direct relationship between the layer-wise $ell$ reconstruction error and the model perplexity increase due to quantization.
This insight enables two novel applications: (1) a simple data-free LLM quantization method using Hadamard rotations and MSE-optimal grids, dubbed HIGGS, and (2) an optimal solution to the problem of finding non-uniform per-layer quantization levels.
arXiv Detail & Related papers (2024-11-26T15:35:44Z) - LASERS: LAtent Space Encoding for Representations with Sparsity for Generative Modeling [3.9426000822656224]
We show that our more latent space is more expressive and has leads to better representations than the Vector Quantization approach.
Our results thus suggest that the true benefit of the VQ approach might not be from discretization of the latent space, but rather the lossy compression of the latent space.
arXiv Detail & Related papers (2024-09-16T08:20:58Z) - Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning [86.15009879251386]
We propose a novel architecture and method of explainable classification with Concept Bottleneck Models (CBM)
CBMs require an additional set of concepts to leverage.
We show a significant increase in accuracy using sparse hidden layers in CLIP-based bottleneck models.
arXiv Detail & Related papers (2024-04-04T09:43:43Z) - HyperVQ: MLR-based Vector Quantization in Hyperbolic Space [56.4245885674567]
We study the use of hyperbolic spaces for vector quantization (HyperVQ)
We show that hyperVQ performs comparably in reconstruction and generative tasks while outperforming VQ in discriminative tasks and learning a highly disentangled latent space.
arXiv Detail & Related papers (2024-03-18T03:17:08Z) - LL-VQ-VAE: Learnable Lattice Vector-Quantization For Efficient
Representations [0.0]
We introduce learnable lattice vector quantization and demonstrate its effectiveness for learning discrete representations.
Our method, termed LL-VQ-VAE, replaces the vector quantization layer in VQ-VAE with lattice-based discretization.
Compared to VQ-VAE, our method obtains lower reconstruction errors under the same training conditions, trains in a fraction of the time, and with a constant number of parameters.
arXiv Detail & Related papers (2023-10-13T20:03:18Z) - Soft Convex Quantization: Revisiting Vector Quantization with Convex
Optimization [40.1651740183975]
We propose Soft Convex Quantization (SCQ) as a direct substitute for Vector Quantization (VQ)
SCQ works like a differentiable convex optimization (DCO) layer.
We demonstrate its efficacy on the CIFAR-10, GTSRB and LSUN datasets.
arXiv Detail & Related papers (2023-10-04T17:45:14Z) - Online Clustered Codebook [100.1650001618827]
We present a simple alternative method for online codebook learning, Clustering VQ-VAE (CVQ-VAE)
Our approach selects encoded features as anchors to update the dead'' codevectors, while optimising the codebooks which are alive via the original loss.
Our CVQ-VAE can be easily integrated into the existing models with just a few lines of code.
arXiv Detail & Related papers (2023-07-27T18:31:04Z) - Not All Image Regions Matter: Masked Vector Quantization for
Autoregressive Image Generation [78.13793505707952]
Existing autoregressive models follow the two-stage generation paradigm that first learns a codebook in the latent space for image reconstruction and then completes the image generation autoregressively based on the learned codebook.
We propose a novel two-stage framework, which consists of Masked Quantization VAE (MQ-VAE) Stack model from modeling redundancy.
arXiv Detail & Related papers (2023-05-23T02:15:53Z) - SC-VAE: Sparse Coding-based Variational Autoencoder with Learned ISTA [0.6770292596301478]
We introduce a new VAE variant, termed sparse coding-based VAE with learned ISTA (SC-VAE), which integrates sparse coding within variational autoencoder framework.
Experiments on two image datasets demonstrate that our model achieves improved image reconstruction results compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-03-29T13:18:33Z) - Learning to Encode Position for Transformer with Continuous Dynamical
Model [88.69870971415591]
We introduce a new way of learning to encode position information for non-recurrent models, such as Transformer models.
We model the evolution of encoded results along position index by such a dynamical system.
arXiv Detail & Related papers (2020-03-13T00:41:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.