LL-VQ-VAE: Learnable Lattice Vector-Quantization For Efficient
Representations
- URL: http://arxiv.org/abs/2310.09382v1
- Date: Fri, 13 Oct 2023 20:03:18 GMT
- Title: LL-VQ-VAE: Learnable Lattice Vector-Quantization For Efficient
Representations
- Authors: Ahmed Khalil, Robert Piechocki, Raul Santos-Rodriguez
- Abstract summary: We introduce learnable lattice vector quantization and demonstrate its effectiveness for learning discrete representations.
Our method, termed LL-VQ-VAE, replaces the vector quantization layer in VQ-VAE with lattice-based discretization.
Compared to VQ-VAE, our method obtains lower reconstruction errors under the same training conditions, trains in a fraction of the time, and with a constant number of parameters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we introduce learnable lattice vector quantization and
demonstrate its effectiveness for learning discrete representations. Our
method, termed LL-VQ-VAE, replaces the vector quantization layer in VQ-VAE with
lattice-based discretization. The learnable lattice imposes a structure over
all discrete embeddings, acting as a deterrent against codebook collapse,
leading to high codebook utilization. Compared to VQ-VAE, our method obtains
lower reconstruction errors under the same training conditions, trains in a
fraction of the time, and with a constant number of parameters (equal to the
embedding dimension $D$), making it a very scalable approach. We demonstrate
these results on the FFHQ-1024 dataset and include FashionMNIST and Celeb-A.
Related papers
- Addressing Representation Collapse in Vector Quantized Models with One Linear Layer [10.532262196027752]
Vector Quantization (VQ) is a widely used method for converting continuous representations into discrete codes.
VQ models are often hindered by the problem of representation collapse in the latent space.
We propose textbfSimVQ, a novel method which re parameterizes the code vectors through a linear transformation layer based on a learnable latent basis.
arXiv Detail & Related papers (2024-11-04T12:40:18Z) - Gaussian Mixture Vector Quantization with Aggregated Categorical Posterior [5.862123282894087]
We introduce the Vector Quantized Variational Autoencoder (VQ-VAE)
VQ-VAE is a type of variational autoencoder using discrete embedding as latent.
We show that GM-VQ improves codebook utilization and reduces information loss without relying on handcrafteds.
arXiv Detail & Related papers (2024-10-14T05:58:11Z) - HyperVQ: MLR-based Vector Quantization in Hyperbolic Space [56.4245885674567]
We study the use of hyperbolic spaces for vector quantization (HyperVQ)
We show that hyperVQ performs comparably in reconstruction and generative tasks while outperforming VQ in discriminative tasks and learning a highly disentangled latent space.
arXiv Detail & Related papers (2024-03-18T03:17:08Z) - Vector Quantization for Deep-Learning-Based CSI Feedback in Massive MIMO
Systems [7.934232975873179]
This paper presents a finite-rate deep-learning (DL)-based channel state information (CSI) feedback method for massive multiple-input multiple-output (MIMO) systems.
The presented method provides a finite-bit representation of the latent vector based on a vector-quantized variational autoencoder (VQ-VAE) framework.
arXiv Detail & Related papers (2024-03-12T06:28:41Z) - HQ-VAE: Hierarchical Discrete Representation Learning with Variational Bayes [18.57499609338579]
We propose a novel framework to learn hierarchical discrete representation on the basis of the variational Bayes framework, called hierarchically quantized variational autoencoder (HQ-VAE)
HQ-VAE naturally generalizes the hierarchical variants of VQ-VAE, such as VQ-VAE-2 and residual-quantized VAE (RQ-VAE)
Our comprehensive experiments on image datasets show that HQ-VAE enhances codebook usage and improves reconstruction performance.
arXiv Detail & Related papers (2023-12-31T01:39:38Z) - Soft Convex Quantization: Revisiting Vector Quantization with Convex
Optimization [40.1651740183975]
We propose Soft Convex Quantization (SCQ) as a direct substitute for Vector Quantization (VQ)
SCQ works like a differentiable convex optimization (DCO) layer.
We demonstrate its efficacy on the CIFAR-10, GTSRB and LSUN datasets.
arXiv Detail & Related papers (2023-10-04T17:45:14Z) - Online Clustered Codebook [100.1650001618827]
We present a simple alternative method for online codebook learning, Clustering VQ-VAE (CVQ-VAE)
Our approach selects encoded features as anchors to update the dead'' codevectors, while optimising the codebooks which are alive via the original loss.
Our CVQ-VAE can be easily integrated into the existing models with just a few lines of code.
arXiv Detail & Related papers (2023-07-27T18:31:04Z) - Vector Quantized Wasserstein Auto-Encoder [57.29764749855623]
We study learning deep discrete representations from the generative viewpoint.
We endow discrete distributions over sequences of codewords and learn a deterministic decoder that transports the distribution over the sequences of codewords to the data distribution.
We develop further theories to connect it with the clustering viewpoint of WS distance, allowing us to have a better and more controllable clustering solution.
arXiv Detail & Related papers (2023-02-12T13:51:36Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
We investigate efficient learning from higher-order graph convolution and learning directly from adjacency matrix for node classification.
We show that the resulting model lead to new graphs and residual scaling parameter.
We demonstrate that the proposed methods obtain improved accuracy for node-classification of non-homophilous parameters.
arXiv Detail & Related papers (2022-09-12T04:46:55Z) - Distill-VQ: Learning Retrieval Oriented Vector Quantization By
Distilling Knowledge from Dense Embeddings [50.903547893204234]
We propose Distill-VQ, which unifies the learning of IVF and PQ within a knowledge distillation framework.
The VQ modules are treated as the "students", which are learned to reproduce the predicted relevance.
By doing so, Distill-VQ is able to derive substantial training signals from the massive unlabeled data.
arXiv Detail & Related papers (2022-04-01T03:30:40Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
We propose learning to dynamically select discretization tightness conditioned on inputs.
We show that dynamically varying tightness in communication bottlenecks can improve model performance on visual reasoning and reinforcement learning tasks.
arXiv Detail & Related papers (2022-02-02T23:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.