Addressing Representation Collapse in Vector Quantized Models with One Linear Layer
- URL: http://arxiv.org/abs/2411.02038v2
- Date: Wed, 30 Jul 2025 15:05:10 GMT
- Title: Addressing Representation Collapse in Vector Quantized Models with One Linear Layer
- Authors: Yongxin Zhu, Bocheng Li, Yifei Xin, Zhihua Xia, Linli Xu,
- Abstract summary: Vector Quantization (VQ) is essential for discretizing continuous representations in unsupervised learning.<n>VQ suffers from representation collapse, causing low codebook utilization and limiting scalability.<n>We propose textbfSimpletextbfVQ, which re parameterizes code vectors through a learnable linear transformation layer over a latent basis.
- Score: 13.224989803114632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vector Quantization (VQ) is essential for discretizing continuous representations in unsupervised learning but suffers from representation collapse, causing low codebook utilization and limiting scalability. Existing solutions often rely on complex optimizations or reduce latent dimensionality, which compromises model capacity and fails to fully solve the problem. We identify the root cause as disjoint codebook optimization, where only a few code vectors are updated via gradient descent. To fix this, we propose \textbf{Sim}ple\textbf{VQ}, which reparameterizes code vectors through a learnable linear transformation layer over a latent basis, optimizing the \textit{entire linear space} rather than nearest \textit{individual code vectors}. Although the multiplication of two linear matrices is equivalent to applying a single linear layer, this simple approach effectively prevents collapse. Extensive experiments on image and audio tasks demonstrate that SimVQ improves codebook usage, is easy to implement, and generalizes well across modalities and architectures.
Related papers
- Scalable Image Tokenization with Index Backpropagation Quantization [74.15447383432262]
Index Backpropagation Quantization (IBQ) is a new VQ method for the joint optimization of all codebook embeddings and the visual encoder.
IBQ enables scalable training of visual tokenizers and, for the first time, achieves a large-scale codebook with high dimension ($256$) and high utilization.
arXiv Detail & Related papers (2024-12-03T18:59:10Z) - Bilinear Convolution Decomposition for Causal RL Interpretability [0.0]
Efforts to interpret reinforcement learning (RL) models often rely on high-level techniques such as attribution or probing.
This work proposes replacing nonlinearities in convolutional neural networks (ConvNets) with bilinear variants, to produce a class of models for which these limitations can be addressed.
We show bilinear model variants perform comparably in model-free reinforcement learning settings, and give a side by side comparison on ProcGen environments.
arXiv Detail & Related papers (2024-12-01T19:32:04Z) - Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
We present a "line theoremarity" establishing a direct relationship between the layer-wise $ell$ reconstruction error and the model perplexity increase due to quantization.
This insight enables two novel applications: (1) a simple data-free LLM quantization method using Hadamard rotations and MSE-optimal grids, dubbed HIGGS, and (2) an optimal solution to the problem of finding non-uniform per-layer quantization levels.
arXiv Detail & Related papers (2024-11-26T15:35:44Z) - LASERS: LAtent Space Encoding for Representations with Sparsity for Generative Modeling [3.9426000822656224]
We show that our more latent space is more expressive and has leads to better representations than the Vector Quantization approach.
Our results thus suggest that the true benefit of the VQ approach might not be from discretization of the latent space, but rather the lossy compression of the latent space.
arXiv Detail & Related papers (2024-09-16T08:20:58Z) - Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning [86.15009879251386]
We propose a novel architecture and method of explainable classification with Concept Bottleneck Models (CBM)
CBMs require an additional set of concepts to leverage.
We show a significant increase in accuracy using sparse hidden layers in CLIP-based bottleneck models.
arXiv Detail & Related papers (2024-04-04T09:43:43Z) - HyperVQ: MLR-based Vector Quantization in Hyperbolic Space [56.4245885674567]
We study the use of hyperbolic spaces for vector quantization (HyperVQ)
We show that hyperVQ performs comparably in reconstruction and generative tasks while outperforming VQ in discriminative tasks and learning a highly disentangled latent space.
arXiv Detail & Related papers (2024-03-18T03:17:08Z) - LL-VQ-VAE: Learnable Lattice Vector-Quantization For Efficient
Representations [0.0]
We introduce learnable lattice vector quantization and demonstrate its effectiveness for learning discrete representations.
Our method, termed LL-VQ-VAE, replaces the vector quantization layer in VQ-VAE with lattice-based discretization.
Compared to VQ-VAE, our method obtains lower reconstruction errors under the same training conditions, trains in a fraction of the time, and with a constant number of parameters.
arXiv Detail & Related papers (2023-10-13T20:03:18Z) - Soft Convex Quantization: Revisiting Vector Quantization with Convex
Optimization [40.1651740183975]
We propose Soft Convex Quantization (SCQ) as a direct substitute for Vector Quantization (VQ)
SCQ works like a differentiable convex optimization (DCO) layer.
We demonstrate its efficacy on the CIFAR-10, GTSRB and LSUN datasets.
arXiv Detail & Related papers (2023-10-04T17:45:14Z) - Online Clustered Codebook [100.1650001618827]
We present a simple alternative method for online codebook learning, Clustering VQ-VAE (CVQ-VAE)
Our approach selects encoded features as anchors to update the dead'' codevectors, while optimising the codebooks which are alive via the original loss.
Our CVQ-VAE can be easily integrated into the existing models with just a few lines of code.
arXiv Detail & Related papers (2023-07-27T18:31:04Z) - Not All Image Regions Matter: Masked Vector Quantization for
Autoregressive Image Generation [78.13793505707952]
Existing autoregressive models follow the two-stage generation paradigm that first learns a codebook in the latent space for image reconstruction and then completes the image generation autoregressively based on the learned codebook.
We propose a novel two-stage framework, which consists of Masked Quantization VAE (MQ-VAE) Stack model from modeling redundancy.
arXiv Detail & Related papers (2023-05-23T02:15:53Z) - Straightening Out the Straight-Through Estimator: Overcoming
Optimization Challenges in Vector Quantized Networks [35.6604960300194]
This work examines the challenges of training neural networks using vector quantization using straight-through estimation.
We find that a primary cause of training instability is the discrepancy between the model embedding and the code-vector distribution.
We identify the factors that contribute to this issue, including the codebook gradient sparsity and the asymmetric nature of the commitment loss.
arXiv Detail & Related papers (2023-05-15T17:56:36Z) - SC-VAE: Sparse Coding-based Variational Autoencoder with Learned ISTA [0.6770292596301478]
We introduce a new VAE variant, termed sparse coding-based VAE with learned ISTA (SC-VAE), which integrates sparse coding within variational autoencoder framework.
Experiments on two image datasets demonstrate that our model achieves improved image reconstruction results compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-03-29T13:18:33Z) - Nonsmooth automatic differentiation: a cheap gradient principle and
other complexity results [0.0]
We provide a model to estimate the computational costs of the backward and forward modes of algorithmic differentiation for a wide class of nonsmooth programs.
Prominent examples are the famous relu and convolutional neural networks together with their standard loss functions.
arXiv Detail & Related papers (2022-06-01T08:43:35Z) - Smooth over-parameterized solvers for non-smooth structured optimization [3.756550107432323]
Non-smoothness encodes structural constraints on the solutions, such as sparsity, group sparsity, low-rank edges and sharp edges.
We operate a non-weighted but smooth overparametrization of the underlying nonsmooth optimization problems.
Our main contribution is to apply the Variable Projection (VarPro) which defines a new formulation by explicitly minimizing over part of the variables.
arXiv Detail & Related papers (2022-05-03T09:23:07Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Coordinate Linear Variance Reduction for Generalized Linear Programming [27.365677554732304]
We show that the linear structure in the problem can be used to design an efficient, scalable first-order algorithm.
textscclvr yields improved complexity results for (GLP) that depend on the max row norm of the linear constraint matrix in (GLP) rather than the spectral norm.
arXiv Detail & Related papers (2021-11-02T18:57:23Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
Algorithm unfolding creates an interpretable and parsimonious neural network architecture by implementing each iteration of a model-based algorithm as a neural layer.
In this paper, leveraging a recent linear algebraic theorem called Gershgorin disc perfect alignment (GDPA), we unroll a projection-free algorithm for semi-definite programming relaxation (SDR) of a binary graph.
Experimental results show that our unrolled network outperformed pure model-based graph classifiers, and achieved comparable performance to pure data-driven networks but using far fewer parameters.
arXiv Detail & Related papers (2021-09-10T07:01:15Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
We propose a dependable learning based on Cogradient Descent (CoGD) algorithm to address the bilinear optimization problem.
CoGD is introduced to solve bilinear problems when one variable is with sparsity constraint.
It can also be used to decompose the association of features and weights, which further generalizes our method to better train convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-06-20T04:28:20Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Learning to Encode Position for Transformer with Continuous Dynamical
Model [88.69870971415591]
We introduce a new way of learning to encode position information for non-recurrent models, such as Transformer models.
We model the evolution of encoded results along position index by such a dynamical system.
arXiv Detail & Related papers (2020-03-13T00:41:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.