論文の概要: Theory-inspired Label Shift Adaptation via Aligned Distribution Mixture
- arxiv url: http://arxiv.org/abs/2411.02047v1
- Date: Mon, 04 Nov 2024 12:51:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:43:57.914744
- Title: Theory-inspired Label Shift Adaptation via Aligned Distribution Mixture
- Title(参考訳): 配向分布混合による理論にインスパイアされたラベルシフト適応
- Authors: Ruidong Fan, Xiao Ouyang, Hong Tao, Yuhua Qian, Chenping Hou,
- Abstract要約: ADM(Aligned Distribution Mixture)という名称の革新的なラベルシフトフレームワークを提案する。
本フレームワークでは,分類器学習プロセスに修正を加えることで,4つの典型的なラベルシフト手法を改良する。
提案手法の特異性を考慮し,効率的な二段階最適化戦略を開発する。
- 参考スコア(独自算出の注目度): 21.494268411607766
- License:
- Abstract: As a prominent challenge in addressing real-world issues within a dynamic environment, label shift, which refers to the learning setting where the source (training) and target (testing) label distributions do not match, has recently received increasing attention. Existing label shift methods solely use unlabeled target samples to estimate the target label distribution, and do not involve them during the classifier training, resulting in suboptimal utilization of available information. One common solution is to directly blend the source and target distributions during the training of the target classifier. However, we illustrate the theoretical deviation and limitations of the direct distribution mixture in the label shift setting. To tackle this crucial yet unexplored issue, we introduce the concept of aligned distribution mixture, showcasing its theoretical optimality and generalization error bounds. By incorporating insights from generalization theory, we propose an innovative label shift framework named as Aligned Distribution Mixture (ADM). Within this framework, we enhance four typical label shift methods by introducing modifications to the classifier training process. Furthermore, we also propose a one-step approach that incorporates a pioneering coupling weight estimation strategy. Considering the distinctiveness of the proposed one-step approach, we develop an efficient bi-level optimization strategy. Experimental results demonstrate the effectiveness of our approaches, together with their effectiveness in COVID-19 diagnosis applications.
- Abstract(参考訳): 動的環境における実世界の問題に対処する上での顕著な課題として、ソース(トレーニング)とターゲット(テスト)ラベルの分布が一致しない学習環境を指すラベルシフトが近年注目されている。
既存のラベルシフト法では, 対象ラベル分布を推定するためにラベル付き対象サンプルのみを用いており, 分類器の訓練中にラベルを含まないため, 利用可能な情報の準最適利用が期待できる。
1つの一般的な解決策は、ターゲット分類器のトレーニング中に、ソースとターゲットの分布を直接ブレンドすることである。
しかし,ラベルシフト設定における直接分布混合の理論的偏差と限界について述べる。
この決定的かつ未探索な問題に対処するために、我々は、その理論的最適性と一般化誤差境界を示す配位分布混合の概念を導入する。
一般化理論の知見を取り入れて、アラインド・ディストリビューション・ミクチャー(ADM)と呼ばれる革新的なラベルシフトフレームワークを提案する。
本フレームワークでは,分類器学習プロセスに修正を加えることで,4つの典型的なラベルシフト手法を改良する。
さらに,結合重み推定戦略を先駆的に取り入れた一段階的手法を提案する。
提案手法の特異性を考慮し,効率的な二段階最適化戦略を開発する。
実験結果から、新型コロナウイルスの診断応用において、我々のアプローチの有効性と、その効果が示された。
関連論文リスト
- Harnessing Hierarchical Label Distribution Variations in Test Agnostic Long-tail Recognition [114.96385572118042]
テストラベルの分布の変動は階層的にグローバルレベルとローカルレベルに分解できると主張している。
ラベル分布の異なるDirichletメタ分布に専門家を割り当てる新しいMoE戦略である$mathsfDirMixE$を提案する。
本稿では,分散に基づく正規化による一般化の促進による目的性を示す。
論文 参考訳(メタデータ) (2024-05-13T14:24:56Z) - Distribution Consistency based Self-Training for Graph Neural Networks
with Sparse Labels [33.89511660654271]
グラフニューラルネットワーク(GNN)のノード分類は重要な課題である
ラベルなしデータの豊富さを活用するための、広く普及しているフレームワークとして、セルフトレーニングが登場した。
本稿では,情報的かつ分散の相違を認識可能な疑似ラベル付きノードを識別する,新しい分散一貫性グラフ自己学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-18T22:07:48Z) - RankMatch: A Novel Approach to Semi-Supervised Label Distribution
Learning Leveraging Inter-label Correlations [52.549807652527306]
本稿では,SSLDL (Semi-Supervised Label Distribution Learning) の革新的なアプローチである RankMatch を紹介する。
RankMatchは、ラベルのない大量のデータとともに、少数のラベル付き例を効果的に活用する。
我々はRandMatchに縛られる理論的な一般化を確立し、広範な実験を通じて既存のSSLDL法に対する性能上の優位性を実証した。
論文 参考訳(メタデータ) (2023-12-11T12:47:29Z) - GeT: Generative Target Structure Debiasing for Domain Adaptation [67.17025068995835]
ドメイン適応(DA)は、ドメインシフトの下で、完全にラベル付けされたソースからほとんどラベル付けされていない、または完全にラベル付けされていないターゲットに知識を転送することを目的としています。
近年,擬似ラベリングを利用した半教師付き学習(SSL)技術がDAでますます普及している。
本稿では,高品質な擬似ラベルを用いた非バイアス対象埋め込み分布を学習するGeTを提案する。
論文 参考訳(メタデータ) (2023-08-20T08:52:43Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labelingは、ラベルなしデータを利用するための人気で効果的なアプローチとして登場した。
本稿では,クラスアウェアの擬似ラベル処理を行うCAP(Class-Aware Pseudo-Labeling)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:52:18Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
本稿では,PU学習のためのラベル分布視点を提案する。
そこで本研究では,予測型と基底型のラベル分布間のラベル分布の整合性を追求する。
提案手法の有効性を3つのベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2022-12-06T07:38:29Z) - Combating Label Distribution Shift for Active Domain Adaptation [16.270897459117755]
我々は、未ラベルのターゲットデータに対するアクティブドメイン適応(ADA)の問題を考える。
ドメイン適応におけるソースとターゲット間のラベル分布ミスマッチから重要な問題に対する最近の分析から着想を得て,ADAで初めてこの問題に対処する手法を考案した。
論文 参考訳(メタデータ) (2022-08-13T09:06:45Z) - Domain Adaptation under Open Set Label Shift [39.424134505152544]
オープンセットラベルシフト(OSLS)におけるドメイン適応問題について紹介する。
OSLSはラベルシフトとポジティブアンラベル(PU)学習の下でドメイン適応を仮定する。
ブラックボックス予測器を利用する両方のタスクに対して,実用的な手法を提案する。
論文 参考訳(メタデータ) (2022-07-26T17:09:48Z) - Similarity Based Label Smoothing For Dialogue Generation [1.1279808969568252]
生成的神経会話システムは一般に、訓練対象の「堅い」目標と予測ロジットの間のエントロピー損失を最小限に抑える目的で訓練される。
ラベルの平滑化は、不正なトレーニングターゲットにデータ独立の均一な分布を強制する。
本稿では,ラベル平滑化における不正確な対象確率の均一分布を,意味論に基づくより自然な分布に変換することを提案する。
論文 参考訳(メタデータ) (2021-07-23T23:25:19Z) - MatchGAN: A Self-Supervised Semi-Supervised Conditional Generative
Adversarial Network [51.84251358009803]
本稿では,条件付き生成逆数ネットワーク(GAN)に対する,半教師付き環境下での自己教師型学習手法を提案する。
利用可能な数少ないラベル付きサンプルのラベル空間から無作為なラベルをサンプリングして拡張を行う。
本手法は,ベースラインのトレーニングに使用したラベル付きサンプルの20%に過ぎません。
論文 参考訳(メタデータ) (2020-06-11T17:14:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。