論文の概要: Scalable Efficient Training of Large Language Models with Low-dimensional Projected Attention
- arxiv url: http://arxiv.org/abs/2411.02063v1
- Date: Mon, 04 Nov 2024 13:06:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:51:20.389954
- Title: Scalable Efficient Training of Large Language Models with Low-dimensional Projected Attention
- Title(参考訳): 低次元投影を考慮した大規模言語モデルのスケーラブルな学習
- Authors: Xingtai Lv, Ning Ding, Kaiyan Zhang, Ermo Hua, Ganqu Cui, Bowen Zhou,
- Abstract要約: 低ランク事前学習は、通常効率的な方法と考えられているが、削減されたパラメータが的確にターゲットされた場合、非常に効果的であることが判明した。
我々は,この構造を低次元投影注意(LPA)と呼び,説明分析を行う。
以上の結果から,LPAモデルでは最大12.4%の時間節約が可能であり,バニラ変圧器と比較して,テストパープレキシティ(ppl)および下流タスクの約5%の改善が達成されている。
- 参考スコア(独自算出の注目度): 27.46314600638108
- License:
- Abstract: Improving the effectiveness and efficiency of large language models (LLMs) simultaneously is a critical yet challenging research goal. In this paper, we find that low-rank pre-training, normally considered as efficient methods that will compromise performance, can be scalably effective when reduced parameters are precisely targeted. Specifically, applying the low-dimensional module only to the attention layer -- resolves this issue and enhances both effectiveness and efficiency. We refer to this structure as Low-dimensional Projected Attention (LPA) and provide an explanatory analysis. Through extensive experimentation at parameter scales of 130M, 370M, and scaling up to 3B, we have validated the effectiveness and scalability of LPA. Our results show that LPA model can save up to 12.4% in time while achieving an approximate 5% improvement in test perplexity (ppl) and on downstream tasks compared with the vanilla Transformer.
- Abstract(参考訳): 大規模言語モデル(LLM)の有効性と効率を同時に向上することは、重要な研究目標である。
本稿では,通常,性能を損なう効率的な手法と考えられる低ランク事前学習が,削減されたパラメータが的確にターゲットされた場合,確実に有効であることを示す。
具体的には、低次元モジュールを注意層にのみ適用することで、この問題を解決し、有効性と効率性の両方を高める。
我々は,この構造を低次元投影注意(LPA)と呼び,説明分析を行う。
パラメータスケール130M, 370M, 3Bの広範な実験を行い, LPAの有効性とスケーラビリティを検証した。
以上の結果から,LPAモデルでは最大12.4%の時間節約が可能であり,バニラ変圧器と比較して,テストパープレキシティ(ppl)および下流タスクの約5%の改善が達成されている。
関連論文リスト
- Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement [0.7558576228782637]
我々は、効率的なソースフリードメイン適応(SFDA)のためのフレームワークを提案する。
提案手法は,ソースモデル作成およびターゲット側適応のための改良されたパラダイムを導入する。
我々は,本フレームワークが様々なSFDA法と互換性があり,計算効率が高いことを実証した。
論文 参考訳(メタデータ) (2024-10-03T02:12:03Z) - EchoAtt: Attend, Copy, then Adjust for More Efficient Large Language Models [29.57891007810509]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて優れた性能を示している。
本稿では,レイヤ間の注目パターンの類似性を解析し,活用することにより,トランスフォーマーベースモデルの最適化を目的とした,新しいフレームワークであるEchoAttを紹介する。
TinyLLaMA-1.1Bによる最良の結果は、EchoAttが推論速度を15%改善し、トレーニング速度を25%改善し、パラメータ数を約4%削減し、ゼロショット性能を改善したことを示している。
論文 参考訳(メタデータ) (2024-09-22T21:08:37Z) - Efficient Continual Pre-training by Mitigating the Stability Gap [68.49269649759005]
本研究では,Large Language Models (LLM) の継続事前学習における挙動について検討する。
固定された計算予算内でのLLM性能を向上させるための3つの効果的な戦略を提案する。
当社の戦略は,OpenLlama-3Bモデルの平均医療タスク性能を36.2%から40.7%に改善し,当初のトレーニング予算の40%に過ぎなかった。
論文 参考訳(メタデータ) (2024-06-21T02:28:37Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - Sine Activated Low-Rank Matrices for Parameter Efficient Learning [25.12262017296922]
低ランク分解過程に正弦波関数を統合する新しい理論枠組みを提案する。
我々の手法は、視覚変換器(ViT)、Large Language Models(LLM)、NeRF(Neural Radiance Fields)において、既存の低ランクモデルの強化を証明している。
論文 参考訳(メタデータ) (2024-03-28T08:58:20Z) - L3 Ensembles: Lifelong Learning Approach for Ensemble of Foundational
Language Models [15.726224465017596]
本稿では、未知のデータから意味のある表現を抽出し、構造化知識ベースを構築することに焦点を当てたアプローチを提案する。
我々は,GLUE や SuperGLUE などのベンチマークを含む様々な NLP タスクの有効性を検証する実験を行った。
提案したL3アンサンブル法は、細調整されたFLMと比較してモデル精度を4%36%向上させる。
論文 参考訳(メタデータ) (2023-11-11T06:59:50Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
大規模言語モデル(LLM)は、様々な自然言語タスクで顕著なパフォーマンスを実現している。
しかし、その大きなサイズは推論を遅く、計算的に高価にする。
最終層の生成能力に影響を与えることなく、これらの層が「良い」生成能力を得ることができることを示す。
論文 参考訳(メタデータ) (2023-10-28T04:07:58Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
フェデレートラーニング(FL)は、分散データとの協調モデルトレーニングを可能にする、有望なパラダイムである。
LLM(Large Language Models)のトレーニングプロセスは一般的に重要なパラメータの更新を引き起こす。
本稿では,性能と効率を同時に向上する効率的な部分的プロンプトチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T16:37:59Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
新しいタスクのための微調整された大規模な事前学習型ビジョンモデルは、パラメーター集約化が進んでいる。
本稿では,大規模なトランスフォーマーモデル適応のための効果的かつ効率的なビジュアルプロンプトチューニング(E2VPT)手法を提案する。
提案手法は2つのベンチマークにおいて,最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2023-07-25T19:03:21Z) - Dynamic Transformers Provide a False Sense of Efficiency [75.39702559746533]
マルチエグジットモデルは、計算の節約を早期出口から得るため、効率と精度をトレードオフする。
本稿では,マルチエグジットモデルの効率を抑えるために特別に最適化された,シンプルで効果的なアタック・フレームワークであるITAを提案する。
GLUEベンチマークの実験により、Pameは様々なマルチエクイットモデルの効率向上を平均80%削減できることが示された。
論文 参考訳(メタデータ) (2023-05-20T16:41:48Z) - SASL: Saliency-Adaptive Sparsity Learning for Neural Network
Acceleration [20.92912642901645]
そこで本稿では、さらなる最適化のために、SASL(Saliency-Adaptive Sparsity Learning)アプローチを提案する。
ResNet-50 の 49.7% の FLOP を 0.39% のトップ-1 と 0.05% のトップ-5 の精度で削減できる。
論文 参考訳(メタデータ) (2020-03-12T16:49:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。