論文の概要: EchoAtt: Attend, Copy, then Adjust for More Efficient Large Language Models
- arxiv url: http://arxiv.org/abs/2409.14595v1
- Date: Sun, 22 Sep 2024 21:08:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 21:57:16.625106
- Title: EchoAtt: Attend, Copy, then Adjust for More Efficient Large Language Models
- Title(参考訳): EchoAtt: より効率的な大規模言語モデルのためのテンプレート、コピー、調整
- Authors: Hossein Rajabzadeh, Aref Jafari, Aman Sharma, Benyamin Jami, Hyock Ju Kwon, Ali Ghodsi, Boxing Chen, Mehdi Rezagholizadeh,
- Abstract要約: 大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて優れた性能を示している。
本稿では,レイヤ間の注目パターンの類似性を解析し,活用することにより,トランスフォーマーベースモデルの最適化を目的とした,新しいフレームワークであるEchoAttを紹介する。
TinyLLaMA-1.1Bによる最良の結果は、EchoAttが推論速度を15%改善し、トレーニング速度を25%改善し、パラメータ数を約4%削減し、ゼロショット性能を改善したことを示している。
- 参考スコア(独自算出の注目度): 29.57891007810509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs), with their increasing depth and number of parameters, have demonstrated outstanding performance across a variety of natural language processing tasks. However, this growth in scale leads to increased computational demands, particularly during inference and fine-tuning. To address these challenges, we introduce EchoAtt, a novel framework aimed at optimizing transformer-based models by analyzing and leveraging the similarity of attention patterns across layers. Our analysis reveals that many inner layers in LLMs, especially larger ones, exhibit highly similar attention matrices. By exploiting this similarity, EchoAtt enables the sharing of attention matrices in less critical layers, significantly reducing computational requirements without compromising performance. We incorporate this approach within a knowledge distillation setup, where a pre-trained teacher model guides the training of a smaller student model. The student model selectively shares attention matrices in layers with high similarity while inheriting key parameters from the teacher. Our best results with TinyLLaMA-1.1B demonstrate that EchoAtt improves inference speed by 15\%, training speed by 25\%, and reduces the number of parameters by approximately 4\%, all while improving zero-shot performance. These findings highlight the potential of attention matrix sharing to enhance the efficiency of LLMs, making them more practical for real-time and resource-limited applications.
- Abstract(参考訳): 大きな言語モデル(LLM)は、その深度とパラメータの数の増加とともに、様々な自然言語処理タスクにおいて優れたパフォーマンスを示している。
しかし、このスケールの増大は、特に推論と微調整の間、計算要求の増大につながる。
これらの課題に対処するために,レイヤ間の注目パターンの類似性を解析し活用することにより,トランスフォーマーベースのモデルの最適化を目的とした,新しいフレームワークであるEchoAttを紹介した。
解析の結果, LLMの内部層, 特に大きな層は, 非常に類似した注意行列を示すことが明らかとなった。
この類似性を活用することで、EchoAttは注意行列をあまり重要でない層で共有することができ、性能を損なうことなく計算要求を大幅に削減できる。
本手法を知識蒸留システムに組み込むことにより,教師モデルがより小規模な学生モデルの訓練を指導する。
学生モデルは、教師から重要なパラメータを継承しながら、高い類似性を持つ層に注意行列を選択的に共有する。
TinyLLaMA-1.1Bによる最良の結果は、EchoAttが推論速度を15倍改善し、トレーニング速度を25倍改善し、パラメータ数を約4倍削減し、ゼロショット性能を向上することを示した。
これらの知見は,LLMの効率を高めるためにアテンションマトリックス共有の可能性を強調し,リアルタイムおよびリソース制限されたアプリケーションにおいてより実用的なものとなる。
関連論文リスト
- LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
本研究では,新しい効率的なモデル構造を提案するのではなく,スクラッチから小規模MLLMを訓練する。
本研究は, 知識蒸留プロセスにおける学習戦略, モデル選択, 蒸留アルゴリズムに関するものである。
異なるベンチマークと適切な戦略を評価することで、2.7Bの小型モデルでも7Bまたは13Bのパラメータを持つ大型モデルと同等に動作することができる。
論文 参考訳(メタデータ) (2024-07-28T06:10:47Z) - Investigating Low-Rank Training in Transformer Language Models: Efficiency and Scaling Analysis [16.253898272659242]
本研究では,トランスフォーマーを用いたLDM,特に低ランクパラメトリゼーションをフィードフォワードネットワーク(FFN)に適用することに焦点を当てた。
大規模なRefinedWebデータセットの実験では、低ランクのパラメトリゼーションが効率的(例:2.6$times$ FFNのスピードアップと32%のパラメータ)であり、トレーニング中に効果的であることが示されている。
この発見に感化されて、我々は現在の中規模および大規模トランスを超越した広帯域かつ構造化されたネットワークを、パープレキシティとスループット性能で開発する。
論文 参考訳(メタデータ) (2024-07-13T10:08:55Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
大規模言語モデル(LLM)は、機械学習における様々なタスクにおいて優れたパフォーマンスを示す。
LLM推論のデプロイは、高い計算とメモリ要求のために問題となる。
我々は,低精度でLLM推論を効率的に展開できるアルゴリズム-ハードウェア共設計ソリューションであるテンダーを提案する。
論文 参考訳(メタデータ) (2024-06-16T09:51:55Z) - Compute Better Spent: Replacing Dense Layers with Structured Matrices [77.61728033234233]
画像領域における畳み込みネットワークの成功が示すように、高密度行列に対するより効率的な代替手段を同定する。
異なる構造は、しばしばパフォーマンスに不可欠な、非常に異なる初期化尺度と学習率を必要とする。
本稿では,モナール行列を含む新しい行列族Block-Trainを提案する。
論文 参考訳(メタデータ) (2024-06-10T13:25:43Z) - The Truth is in There: Improving Reasoning in Language Models with
Layer-Selective Rank Reduction [22.659005954676598]
重み行列の高次成分を選択的に除去することにより,大規模言語モデルの性能を大幅に向上させることができることを示す。
LAER(Layer-Selective Rank reduction)と呼ばれるこの単純な介入は、トレーニングが完了した後、モデル上で行うことができる。
言語モデルとデータセットにまたがって、この発見の汎用性を実証する広範な実験を示す。
論文 参考訳(メタデータ) (2023-12-21T03:51:08Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
大規模言語モデル(LLM)は、様々な自然言語タスクで顕著なパフォーマンスを実現している。
しかし、その大きなサイズは推論を遅く、計算的に高価にする。
最終層の生成能力に影響を与えることなく、これらの層が「良い」生成能力を得ることができることを示す。
論文 参考訳(メタデータ) (2023-10-28T04:07:58Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
行列積演算子(MPO)に基づくより有能なパラメータ共有アーキテクチャを設計する。
MPO分解はパラメータ行列の情報を再編成し、2つの部分に分解することができる。
私たちのアーキテクチャは、モデルのサイズを減らすために、すべてのレイヤで中央テンソルを共有しています。
論文 参考訳(メタデータ) (2023-03-27T02:34:09Z) - Multi-View Attention Transfer for Efficient Speech Enhancement [1.6932706284468382]
特徴量に基づく蒸留であるマルチビューアテンショントランスファー(MV-AT)を提案し、時間領域における効率的な音声強調モデルを得る。
MV-ATは、マルチビュー特徴抽出モデルに基づいて、教師ネットワークのマルチビュー知識を追加パラメータなしで生徒ネットワークに転送する。
論文 参考訳(メタデータ) (2022-08-22T14:47:47Z) - Rethinking Attention Mechanism in Time Series Classification [6.014777261874646]
我々は、フレキシブル・マルチヘッド・リニア・アテンション(FMLA)を提案することにより、アテンション機構の効率性と性能を向上する。
本稿では,時系列におけるノイズの影響を低減し,FMLAの冗長性を低減できる簡易だが効果的なマスク機構を提案する。
85のUCR2018データセットを用いて、このアルゴリズムを11のよく知られたデータセットと比較し、このアルゴリズムがトップ1の精度で同等の性能を持つことを示す。
論文 参考訳(メタデータ) (2022-07-14T07:15:06Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。