Quantum complexity and generalized area law in fully connected models
- URL: http://arxiv.org/abs/2411.02140v1
- Date: Mon, 04 Nov 2024 14:57:52 GMT
- Title: Quantum complexity and generalized area law in fully connected models
- Authors: Donghoon Kim, Tomotaka Kuwahara,
- Abstract summary: The area law for entanglement entropy reflects the complexity of quantum many-body systems.
In this work, we establish a generalized area law up to a polylogarithmic factor in system size.
- Score: 0.276240219662896
- License:
- Abstract: The area law for entanglement entropy fundamentally reflects the complexity of quantum many-body systems, demonstrating ground states of local Hamiltonians to be represented with low computational complexity. While this principle is well-established in one-dimensional systems, little is known beyond 1D cases, and attempts to generalize the area law on infinite-dimensional graphs have largely been disproven. In this work, for non-critical ground states of Hamiltonians on fully connected graphs, we establish a generalized area law up to a polylogarithmic factor in system size, by effectively reducing the boundary area to a constant scale for interactions between subsystems. This result implies an efficient approximation of the ground state by the matrix product state up to an approximation error of $1/\text{poly}(n)$. As the core technique, we develop the mean-field renormalization group approach, which rigorously guarantees efficiency by systematically grouping regions of the system and iteratively approximating each as a product state. This approach provides a rigorous pathway to efficiently simulate ground states of complex systems, advancing our understanding of infinite-dimensional quantum many-body systems and their entanglement structures.
Related papers
- Entanglement entropy bounds for pure states of rapid decorrelation [0.0]
We construct high fidelity approximations of relatively low complexity for pure states of quantum lattice systems.
The applicability of the general results is demonstrated on the quantum Ising model in transverse field.
We establish an area-law type bound on the entanglement in the model's subcritical ground states, valid in all dimensions and up to the model's quantum phase transition.
arXiv Detail & Related papers (2024-06-14T17:28:03Z) - Efficient Representation of Gaussian Fermionic Pure States in Non-Computational Bases [0.0]
This paper introduces an innovative approach for representing Gaussian fermionic states, pivotal in quantum spin systems and fermionic models.
We focus on transitioning these states from the conventional computational (sigmaz) basis to more complex bases, such as (phi, fracpi2, alpha)
We present a novel algorithm that not only simplifies the basis transformation but also reduces computational complexity.
arXiv Detail & Related papers (2024-03-05T19:43:33Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Many-body entropies and entanglement from polynomially-many local measurements [0.26388783516590225]
We show that efficient estimation strategies exist under the assumption that all the spatial correlation lengths are finite.
We argue that our method could be practically useful to detect bipartite mixed-state entanglement for large numbers of qubits available in today's quantum platforms.
arXiv Detail & Related papers (2023-11-14T12:13:15Z) - Lower Bounding Ground-State Energies of Local Hamiltonians Through the Renormalization Group [0.0]
We show how to formulate a tractable convex relaxation of the set of feasible local density matrices of a quantum system.
The coarse-graining maps of the underlying renormalization procedure serve to eliminate a vast number of those constraints.
This can be used to obtain rigorous lower bounds on the ground state energy of arbitrary local Hamiltonians.
arXiv Detail & Related papers (2022-12-06T14:39:47Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Boundary Chaos [0.0]
Scrambling in many-body quantum systems causes initially local observables to spread uniformly over the whole available space under unitary dynamics.
We present a free quantum circuit model, in which ergodicity is induced by an impurity interaction placed on the system's boundary.
arXiv Detail & Related papers (2021-12-09T18:34:08Z) - Local optimization on pure Gaussian state manifolds [63.76263875368856]
We exploit insights into the geometry of bosonic and fermionic Gaussian states to develop an efficient local optimization algorithm.
The method is based on notions of descent gradient attuned to the local geometry.
We use the presented methods to collect numerical and analytical evidence for the conjecture that Gaussian purifications are sufficient to compute the entanglement of purification of arbitrary mixed Gaussian states.
arXiv Detail & Related papers (2020-09-24T18:00:36Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
We propose a geometric framework in which discretizations can be realized systematically.
We show that a generalization of symplectic to nonconservative and in particular dissipative Hamiltonian systems is able to preserve rates of convergence up to a controlled error.
arXiv Detail & Related papers (2020-04-15T00:36:49Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.