論文の概要: Behavioral Sequence Modeling with Ensemble Learning
- arxiv url: http://arxiv.org/abs/2411.02174v1
- Date: Mon, 04 Nov 2024 15:34:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:42:12.293089
- Title: Behavioral Sequence Modeling with Ensemble Learning
- Title(参考訳): アンサンブル学習を用いた行動系列モデリング
- Authors: Maxime Kawawa-Beaudan, Srijan Sood, Soham Palande, Ganapathy Mani, Tucker Balch, Manuela Veloso,
- Abstract要約: 隠れマルコフモデルのアンサンブルを用いたシーケンスモデリングのフレームワークを提案する。
アンサンブルに基づくスコアリング手法は,異なる長さの列間のロバストな比較を可能にする。
本手法の有効性を縦断的人間行動データセットに示す。
- 参考スコア(独自算出の注目度): 8.241486511994202
- License:
- Abstract: We investigate the use of sequence analysis for behavior modeling, emphasizing that sequential context often outweighs the value of aggregate features in understanding human behavior. We discuss framing common problems in fields like healthcare, finance, and e-commerce as sequence modeling tasks, and address challenges related to constructing coherent sequences from fragmented data and disentangling complex behavior patterns. We present a framework for sequence modeling using Ensembles of Hidden Markov Models, which are lightweight, interpretable, and efficient. Our ensemble-based scoring method enables robust comparison across sequences of different lengths and enhances performance in scenarios with imbalanced or scarce data. The framework scales in real-world scenarios, is compatible with downstream feature-based modeling, and is applicable in both supervised and unsupervised learning settings. We demonstrate the effectiveness of our method with results on a longitudinal human behavior dataset.
- Abstract(参考訳): 本研究では,行動モデリングにおけるシーケンス解析の利用について検討し,人間の行動を理解する上での集合的特徴の値よりも逐次的コンテキストの方が優れていることを強調した。
我々は、医療、金融、電子商取引などの分野で、シーケンスモデリングタスクとして一般的な問題をフレーミングすることについて議論し、断片化されたデータから一貫性のあるシーケンスを構築し、複雑な行動パターンを切り離すことに関連する課題に対処する。
本稿では,隠れマルコフモデル(Ensembles of Hidden Markov Models)を用いたシーケンスモデリングのフレームワークを提案する。
アンサンブルに基づくスコアリング手法は,異なる長さの列間のロバストな比較を可能にし,不均衡なデータや少ないデータを持つシナリオの性能を向上させる。
フレームワークは現実世界のシナリオでスケールし、下流の機能ベースのモデリングと互換性があり、教師なしと教師なしの両方の学習設定に適用できる。
本手法の有効性を縦断的人間行動データセットに示す。
関連論文リスト
- Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
本研究では,ニューラルネットワークをアンサンブル手法として活用することを検討する。
低多様性のアンサンブルを学習するリスクを動機として,ベースモデル予測をランダムにドロップすることでモデルの正規化を提案する。
このアプローチはアンサンブル内の多様性を低くし、オーバーフィッティングを減らし、一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-10-06T15:25:39Z) - Towards Efficient Modelling of String Dynamics: A Comparison of State Space and Koopman based Deep Learning Methods [8.654571696634825]
State Space Models (SSM) と Koopman に基づくディープラーニング手法は、線形および非線形の剛弦の力学をモデル化する。
以上の結果から,提案したクープマンモデルが,長周期モデリングにおける非線形ケースにおいて,他の既存手法と同等以上の性能を示すことが示唆された。
本研究は、これらの手法と過去の手法の比較概要を提供し、モデル改善のための革新的な戦略を導入することにより、力学系の物理モデリングに関する洞察を貢献する。
論文 参考訳(メタデータ) (2024-08-29T15:55:27Z) - Learning Car-Following Behaviors Using Bayesian Matrix Normal Mixture Regression [17.828808886958736]
自動車追従(CF)の挙動は, 微視的交通シミュレーションにおいて重要である。
堅牢性にもかかわらず、多くのデータ駆動方式は、解釈可能性に制限のある「ブラックボックス」として動作する。
この研究は、CFの挙動に固有の特徴相関と時間的ダイナミクスを同時にキャプチャするベイズ行列正規混合回帰(MNMR)モデルを導入する。
論文 参考訳(メタデータ) (2024-04-24T17:55:47Z) - Consistent Explanations in the Face of Model Indeterminacy via
Ensembling [12.661530681518899]
この研究は、モデル不確定性の存在下で予測モデルに対して一貫した説明を提供することの課題に対処する。
これらのシナリオで提供される説明の一貫性を高めるためのアンサンブル手法を導入する。
本研究は,説明文の解釈において,モデル不確定性を考慮することの重要性を強調した。
論文 参考訳(メタデータ) (2023-06-09T18:45:43Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
これらの目標を達成するためのModel-to-Matchと呼ばれる一般的なフレームワークについて説明する。
Model-to-Matchは、距離メートル法を構築するために変数重要度測定を使用する。
LASSO を用いて Model-to-Match フレームワークを運用する。
論文 参考訳(メタデータ) (2023-02-23T00:43:03Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z) - Shared Interest: Large-Scale Visual Analysis of Model Behavior by
Measuring Human-AI Alignment [15.993648423884466]
健全性(Saliency)は、モデル出力における入力特徴の重要性を特定する技術である。
共有興味:人間の注釈付き真実と唾液度を比較するための指標のセットを提示する。
モデルの信頼性に対する信頼を急速に発展または失うために、Shared Interestがどのように使用できるかを示す。
論文 参考訳(メタデータ) (2021-07-20T02:44:39Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。