Digi2Real: Bridging the Realism Gap in Synthetic Data Face Recognition via Foundation Models
- URL: http://arxiv.org/abs/2411.02188v3
- Date: Wed, 06 Nov 2024 06:38:47 GMT
- Title: Digi2Real: Bridging the Realism Gap in Synthetic Data Face Recognition via Foundation Models
- Authors: Anjith George, Sebastien Marcel,
- Abstract summary: We introduce a novel framework for realism transfer aimed at enhancing the realism of synthetically generated face images.
By integrating the controllable aspects of the graphics pipeline with our realism enhancement technique, we generate a large amount of realistic variations.
- Score: 4.910937238451485
- License:
- Abstract: The accuracy of face recognition systems has improved significantly in the past few years, thanks to the large amount of data collected and the advancement in neural network architectures. However, these large-scale datasets are often collected without explicit consent, raising ethical and privacy concerns. To address this, there have been proposals to use synthetic datasets for training face recognition models. Yet, such models still rely on real data to train the generative models and generally exhibit inferior performance compared to those trained on real datasets. One of these datasets, DigiFace, uses a graphics pipeline to generate different identities and different intra-class variations without using real data in training the models. However, the performance of this approach is poor on face recognition benchmarks, possibly due to the lack of realism in the images generated from the graphics pipeline. In this work, we introduce a novel framework for realism transfer aimed at enhancing the realism of synthetically generated face images. Our method leverages the large-scale face foundation model, and we adapt the pipeline for realism enhancement. By integrating the controllable aspects of the graphics pipeline with our realism enhancement technique, we generate a large amount of realistic variations-combining the advantages of both approaches. Our empirical evaluations demonstrate that models trained using our enhanced dataset significantly improve the performance of face recognition systems over the baseline. The source code and datasets will be made available publicly: https://www.idiap.ch/paper/digi2real
Related papers
- HyperFace: Generating Synthetic Face Recognition Datasets by Exploring Face Embedding Hypersphere [22.8742248559748]
Face recognition datasets are often collected by crawling Internet and without individuals' consents, raising ethical and privacy concerns.
Generating synthetic datasets for training face recognition models has emerged as a promising alternative.
We propose a new synthetic dataset generation approach, called HyperFace.
arXiv Detail & Related papers (2024-11-13T09:42:12Z) - Unveiling Synthetic Faces: How Synthetic Datasets Can Expose Real Identities [22.8742248559748]
We show that in 6 state-of-the-art synthetic face recognition datasets, several samples from the original real dataset are leaked.
This paper is the first work which shows the leakage from training data of generator models into the generated synthetic face recognition datasets.
arXiv Detail & Related papers (2024-10-31T15:17:14Z) - Towards Realistic Data Generation for Real-World Super-Resolution [58.88039242455039]
RealDGen is an unsupervised learning data generation framework designed for real-world super-resolution.
We develop content and degradation extraction strategies, which are integrated into a novel content-degradation decoupled diffusion model.
Experiments demonstrate that RealDGen excels in generating large-scale, high-quality paired data that mirrors real-world degradations.
arXiv Detail & Related papers (2024-06-11T13:34:57Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns.
Recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets.
This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)
The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones.
arXiv Detail & Related papers (2024-04-06T10:30:31Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - Improving the Effectiveness of Deep Generative Data [5.856292656853396]
Training a model on purely synthetic images for downstream image processing tasks results in an undesired performance drop compared to training on real data.
We propose a new taxonomy to describe factors contributing to this commonly observed phenomenon and investigate it on the popular CIFAR-10 dataset.
Our method outperforms baselines on downstream classification tasks both in case of training on synthetic only (Synthetic-to-Real) and training on a mix of real and synthetic data.
arXiv Detail & Related papers (2023-11-07T12:57:58Z) - SynthDistill: Face Recognition with Knowledge Distillation from
Synthetic Data [8.026313049094146]
State-of-the-art face recognition networks are often computationally expensive and cannot be used for mobile applications.
We propose a new framework to train lightweight face recognition models by distilling the knowledge of a pretrained teacher face recognition model using synthetic data.
We use synthetic face images without identity labels, mitigating the problems in the intra-class variation generation of synthetic datasets.
arXiv Detail & Related papers (2023-08-28T19:15:27Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - Methodology for Building Synthetic Datasets with Virtual Humans [1.5556923898855324]
Large datasets can be used for improved, targeted training of deep neural networks.
In particular, we make use of a 3D morphable face model for the rendering of multiple 2D images across a dataset of 100 synthetic identities.
arXiv Detail & Related papers (2020-06-21T10:29:36Z) - Deep CG2Real: Synthetic-to-Real Translation via Image Disentanglement [78.58603635621591]
Training an unpaired synthetic-to-real translation network in image space is severely under-constrained.
We propose a semi-supervised approach that operates on the disentangled shading and albedo layers of the image.
Our two-stage pipeline first learns to predict accurate shading in a supervised fashion using physically-based renderings as targets.
arXiv Detail & Related papers (2020-03-27T21:45:41Z) - Learning Inverse Rendering of Faces from Real-world Videos [52.313931830408386]
Existing methods decompose a face image into three components (albedo, normal, and illumination) by supervised training on synthetic data.
We propose a weakly supervised training approach to train our model on real face videos, based on the assumption of consistency of albedo and normal.
Our network is trained on both real and synthetic data, benefiting from both.
arXiv Detail & Related papers (2020-03-26T17:26:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.