論文の概要: Improving Steering Vectors by Targeting Sparse Autoencoder Features
- arxiv url: http://arxiv.org/abs/2411.02193v1
- Date: Mon, 04 Nov 2024 15:46:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:51:19.893537
- Title: Improving Steering Vectors by Targeting Sparse Autoencoder Features
- Title(参考訳): スパースオートエンコーダ機能によるステアリングベクトルの改善
- Authors: Sviatoslav Chalnev, Matthew Siu, Arthur Conmy,
- Abstract要約: ステアリングベクトルの効果をSAEを用いて測定し、ステアリングベクトル介入の因果効果を理解する方法を提案する。
SAE-Targeted Steering (SAE-TS) という改良されたステアリング法を開発し、意図しない副作用を最小限に抑えながら、特定のSAE特徴を標的としたステアリングベクトルを求める。
- 参考スコア(独自算出の注目度): 2.4188584949331053
- License:
- Abstract: To control the behavior of language models, steering methods attempt to ensure that outputs of the model satisfy specific pre-defined properties. Adding steering vectors to the model is a promising method of model control that is easier than finetuning, and may be more robust than prompting. However, it can be difficult to anticipate the effects of steering vectors produced by almost all existing methods, such as CAA (Panickssery et al., 2024) or the direct use of SAE latents (Templeton et al., 2024). In our work, we address this issue by using SAEs to measure the effects of steering vectors, giving us a method that can be used to understand the causal effect of any steering vector intervention. We use this method for measuring causal effects to develop an improved steering method, SAE-Targeted Steering (SAE-TS), which finds steering vectors to target specific SAE features while minimizing unintended side effects. We show that overall, SAE-TS balances steering effects with coherence better than CAA and SAE feature steering, when evaluated on a range of tasks.
- Abstract(参考訳): 言語モデルの振る舞いを制御するために、ステアリング法は、モデルの出力が特定の事前定義された特性を満たすことを保証する。
モデルにステアリングベクトルを追加することは、微調整よりも容易で、プロンプトよりも堅牢なモデル制御の有望な方法である。
しかし、CAA(Panickssery et al , 2024)やSAE潜伏剤(Templeton et al , 2024)など、ほとんどすべての既存手法による操舵ベクトルの効果を予想することは困難である。
本研究では,SAEを用いてステアリングベクターの効果を測定し,ステアリングベクター介入の因果効果を理解する方法を提案する。
本研究では,SAE-Targeted Steering (SAE-TS) を改良したステアリング法,SAE-TS(SAE-Targeted Steering) を開発した。
全体として,SAE-TSはCAAとSAEの機能ステアリングよりもコヒーレンスとステアリング効果のバランスが良好であることを示し,様々なタスクで評価した。
関連論文リスト
- Control-ITRA: Controlling the Behavior of a Driving Model [14.31198056147624]
エージェントの動作に影響を与える制御ITRAと呼ばれる手法を,ウェイポイントの割り当てと目標速度の変調によって導入する。
本手法は, 可制御性, 無屈折性トラジェクトリを生成できると同時に, 視界と見えない位置の両方でリアリズムを保ち得ることを示す。
論文 参考訳(メタデータ) (2025-01-17T03:35:11Z) - Steering Large Language Models with Feature Guided Activation Additions [0.0]
本稿では,新しいアクティベーションステアリング法であるFeature Guided Activation Additions (FGAA)を紹介する。
スパースオートエンコーダ(SAE)の潜在空間で操作することにより、FGAAは正確なステアリングベクトルを構成する。
Gemma-2-2B と Gemma-2-9B モデルの評価は、FGAA が既存のステアリング法より優れていることを示す。
論文 参考訳(メタデータ) (2025-01-17T02:55:23Z) - Analyzing the Generalization and Reliability of Steering Vectors [8.253773195379166]
ステアリングベクトルは分布内および分布外の両方にかなりの制限があることを示す。
分散において、ステアビリティは異なる入力間で高度に変動する。
アウト・オブ・ディストリビューション(out-of-distribution)、ステアリングベクトル(steering vector)はよく一般化されるが、いくつかの概念はプロンプトの合理的な変化に対して脆弱である。
論文 参考訳(メタデータ) (2024-07-17T08:32:03Z) - Steering Without Side Effects: Improving Post-Deployment Control of Language Models [61.99293520621248]
言語モデル(LM)は、デプロイ後予期せず振る舞うことが示されている。
KL-then-steer (KTS) は, その利点を保ちながら, 操舵の副作用を低減する技術である。
本手法はLlama-2-chat-7Bモデルと比較して44%のジェイルブレイク攻撃を防ぐ。
論文 参考訳(メタデータ) (2024-06-21T01:37:39Z) - Personalized Steering of Large Language Models: Versatile Steering Vectors Through Bi-directional Preference Optimization [34.05163996072159]
人選好データのアクティベーションから「ステアリングベクトル」を抽出する。
この研究は、双方向の選好最適化によってより効果的なステアリングベクトルを生み出すことができる革新的なアプローチを提案する。
提案手法は, ステアリングベクトルが人間の嗜好データペアの生成確率に直接影響を与えるように設計されている。
論文 参考訳(メタデータ) (2024-05-28T05:10:40Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
我々は,無害アライメントのためのクロスモデルガイダンスを利用する新しい推論時間アライメント手法であるtextbfInferAligner を開発した。
実験結果から,本手法はファイナンス,医学,数学の分野特化モデルに極めて効果的に適用可能であることが示された。
これは有害な命令とジェイルブレイク攻撃の両方のアタック成功率(ASR)を著しく低下させ、下流タスクではほとんど変化のないパフォーマンスを維持している。
論文 参考訳(メタデータ) (2024-01-20T10:41:03Z) - Steering Llama 2 via Contrastive Activation Addition [41.54815073311959]
コントラストアクティベーション付加(Contrastive Activation Addition、CAA)は、前方通過中にアクティベーションを変更することで言語モデルを操る手法である。
CAAは、Large Language Models (LLMs)において、どのようにハイレベルな概念が表現されるかを正確に判断し、明らかにする。
論文 参考訳(メタデータ) (2023-12-09T04:40:46Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
本研究では,制御に対する予測の下流効果を評価するための制御認識予測目標(CAPOs)を提案する。
本稿では,エージェント間の注意モデルを用いた重み付けと,予測軌跡を接地真実軌跡に交換する際の制御変動に基づく重み付けの2つの方法を提案する。
論文 参考訳(メタデータ) (2022-04-28T07:37:21Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。