Counterfactual Explanations via Riemannian Latent Space Traversal
- URL: http://arxiv.org/abs/2411.02259v1
- Date: Mon, 04 Nov 2024 16:49:39 GMT
- Title: Counterfactual Explanations via Riemannian Latent Space Traversal
- Authors: Paraskevas Pegios, Aasa Feragen, Andreas Abildtrup Hansen, Georgios Arvanitidis,
- Abstract summary: Counterfactual explanations form a powerful tool for providing actionable explanations to practitioners.
We introduce counterfactual explanations using a metric pulled back via the decoder and the classifier under scrutiny.
This metric encodes information about the complex geometric structure of the data and the learned representation, enabling us to obtain robust counterfactual trajectories with high fidelity.
- Score: 6.6622532846616505
- License:
- Abstract: The adoption of increasingly complex deep models has fueled an urgent need for insight into how these models make predictions. Counterfactual explanations form a powerful tool for providing actionable explanations to practitioners. Previously, counterfactual explanation methods have been designed by traversing the latent space of generative models. Yet, these latent spaces are usually greatly simplified, with most of the data distribution complexity contained in the decoder rather than the latent embedding. Thus, traversing the latent space naively without taking the nonlinear decoder into account can lead to unnatural counterfactual trajectories. We introduce counterfactual explanations obtained using a Riemannian metric pulled back via the decoder and the classifier under scrutiny. This metric encodes information about the complex geometric structure of the data and the learned representation, enabling us to obtain robust counterfactual trajectories with high fidelity, as demonstrated by our experiments in real-world tabular datasets.
Related papers
- Scaling Laws with Hidden Structure [2.474908349649168]
Recent advances suggest that text and image data contain such hidden structures, which help mitigate the curse of dimensionality.
In this paper, we present a controlled experimental framework to test whether neural networks can indeed exploit such hidden factorial structures''
We find that they do leverage these latent patterns to learn discrete distributions more efficiently, and derive scaling laws linking model sizes, hidden factorizations, and accuracy.
arXiv Detail & Related papers (2024-11-02T22:32:53Z) - Decoder ensembling for learned latent geometries [15.484595752241122]
We show how to easily compute geodesics on the associated expected manifold.
We find this simple and reliable, thereby coming one step closer to easy-to-use latent geometries.
arXiv Detail & Related papers (2024-08-14T12:35:41Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
In this letter we introduce an algorithm to infer the intrinsic dimension (ID) of datasets embedded in discrete spaces.
We demonstrate its accuracy on benchmark datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting.
This suggests that evolutive pressure acts on a low-dimensional manifold despite the high-dimensionality of sequences' space.
arXiv Detail & Related papers (2022-07-20T06:38:36Z) - The Manifold Hypothesis for Gradient-Based Explanations [55.01671263121624]
gradient-based explanation algorithms provide perceptually-aligned explanations.
We show that the more a feature attribution is aligned with the tangent space of the data, the more perceptually-aligned it tends to be.
We suggest that explanation algorithms should actively strive to align their explanations with the data manifold.
arXiv Detail & Related papers (2022-06-15T08:49:24Z) - Geometry-Aware Hamiltonian Variational Auto-Encoder [0.0]
Variational auto-encoders (VAEs) have proven to be a well suited tool for performing dimensionality reduction by extracting latent variables lying in a potentially much smaller dimensional space than the data.
However, such generative models may perform poorly when trained on small data sets which are abundant in many real-life fields such as medicine.
We argue that such latent space modelling provides useful information about its underlying structure leading to far more meaningfuls, more realistic data-generation and more reliable clustering.
arXiv Detail & Related papers (2020-10-22T08:26:46Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
dimensionality reduction methods provide a valuable means to visualize and interpret high-dimensional data.
Many popular methods can fail dramatically, even on simple two-dimensional Manifolds.
This paper presents an embedding method for a novel, incremental tangent space estimator that incorporates global structure as coordinates.
Empirically, we show our algorithm recovers novel and interesting embeddings on real-world and synthetic datasets.
arXiv Detail & Related papers (2020-07-07T10:04:28Z) - Variational Autoencoder with Learned Latent Structure [4.41370484305827]
We introduce the Variational Autoencoder with Learned Latent Structure (VAELLS)
VAELLS incorporates a learnable manifold model into the latent space of a VAE.
We validate our model on examples with known latent structure and also demonstrate its capabilities on a real-world dataset.
arXiv Detail & Related papers (2020-06-18T14:59:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.