Addressing Uncertainty in LLMs to Enhance Reliability in Generative AI
- URL: http://arxiv.org/abs/2411.02381v1
- Date: Mon, 04 Nov 2024 18:49:46 GMT
- Title: Addressing Uncertainty in LLMs to Enhance Reliability in Generative AI
- Authors: Ramneet Kaur, Colin Samplawski, Adam D. Cobb, Anirban Roy, Brian Matejek, Manoj Acharya, Daniel Elenius, Alexander M. Berenbeim, John A. Pavlik, Nathaniel D. Bastian, Susmit Jha,
- Abstract summary: We present a dynamic semantic clustering approach inspired by the Chinese Restaurant Process.
We quantify uncertainty of Large Language Models (LLMs) on a given query by calculating entropy of the generated semantic clusters.
We propose leveraging the (negative) likelihood of these clusters as the (non)conformity score within Conformal Prediction framework.
- Score: 47.64301863399763
- License:
- Abstract: In this paper, we present a dynamic semantic clustering approach inspired by the Chinese Restaurant Process, aimed at addressing uncertainty in the inference of Large Language Models (LLMs). We quantify uncertainty of an LLM on a given query by calculating entropy of the generated semantic clusters. Further, we propose leveraging the (negative) likelihood of these clusters as the (non)conformity score within Conformal Prediction framework, allowing the model to predict a set of responses instead of a single output, thereby accounting for uncertainty in its predictions. We demonstrate the effectiveness of our uncertainty quantification (UQ) technique on two well known question answering benchmarks, COQA and TriviaQA, utilizing two LLMs, Llama2 and Mistral. Our approach achieves SOTA performance in UQ, as assessed by metrics such as AUROC, AUARC, and AURAC. The proposed conformal predictor is also shown to produce smaller prediction sets while maintaining the same probabilistic guarantee of including the correct response, in comparison to existing SOTA conformal prediction baseline.
Related papers
- Quantifying Prediction Consistency Under Model Multiplicity in Tabular LLMs [10.494477811252034]
Fine-tuning large language models can lead to textitfine-tuning multiplicity, where equally well-performing models make conflicting predictions on the same inputs.
This raises critical concerns about the robustness and reliability of Tabular LLMs.
This work proposes a novel metric to quantify the robustness of individual predictions without expensive model retraining.
arXiv Detail & Related papers (2024-07-04T22:22:09Z) - Calibrated Large Language Models for Binary Question Answering [49.1574468325115]
A well-calibrated model should produce probabilities that accurately reflect the likelihood of its predictions being correct.
We propose a novel approach that utilizes the inductive Venn--Abers predictor (IVAP) to calibrate the probabilities associated with the output tokens corresponding to the binary labels.
arXiv Detail & Related papers (2024-07-01T09:31:03Z) - ConU: Conformal Uncertainty in Large Language Models with Correctness Coverage Guarantees [68.33498595506941]
We introduce a novel uncertainty measure based on self-consistency theory.
We then develop a conformal uncertainty criterion by integrating the uncertainty condition aligned with correctness into the CP algorithm.
Empirical evaluations indicate that our uncertainty measure outperforms prior state-of-the-art methods.
arXiv Detail & Related papers (2024-06-29T17:33:07Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - TeLeS: Temporal Lexeme Similarity Score to Estimate Confidence in
End-to-End ASR [1.8477401359673709]
Class-probability-based confidence scores do not accurately represent quality of overconfident ASR predictions.
We propose a novel Temporal-Lexeme Similarity (TeLeS) confidence score to train Confidence Estimation Model (CEM)
We conduct experiments with ASR models trained in three languages, namely Hindi, Tamil, and Kannada, with varying training data sizes.
arXiv Detail & Related papers (2024-01-06T16:29:13Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Estimation and Applications of Quantiles in Deep Binary Classification [0.0]
Quantile regression, based on check loss, is a widely used inferential paradigm in Statistics.
We consider the analogue of check loss in the binary classification setting.
We develop individualized confidence scores that can be used to decide whether a prediction is reliable.
arXiv Detail & Related papers (2021-02-09T07:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.