論文の概要: Adaptive Caching for Faster Video Generation with Diffusion Transformers
- arxiv url: http://arxiv.org/abs/2411.02397v2
- Date: Thu, 07 Nov 2024 17:06:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 11:31:58.407653
- Title: Adaptive Caching for Faster Video Generation with Diffusion Transformers
- Title(参考訳): 拡散変換器を用いた高速ビデオ生成のための適応キャッシング
- Authors: Kumara Kahatapitiya, Haozhe Liu, Sen He, Ding Liu, Menglin Jia, Chenyang Zhang, Michael S. Ryoo, Tian Xie,
- Abstract要約: 拡散変換器(DiT)はより大きなモデルと重い注意機構に依存しており、推論速度が遅くなる。
本稿では,Adaptive Caching(AdaCache)と呼ばれる,ビデオDiTの高速化のためのトレーニング不要手法を提案する。
また,AdaCache内で動画情報を利用するMoReg方式を導入し,動作内容に基づいて計算割り当てを制御する。
- 参考スコア(独自算出の注目度): 52.73348147077075
- License:
- Abstract: Generating temporally-consistent high-fidelity videos can be computationally expensive, especially over longer temporal spans. More-recent Diffusion Transformers (DiTs) -- despite making significant headway in this context -- have only heightened such challenges as they rely on larger models and heavier attention mechanisms, resulting in slower inference speeds. In this paper, we introduce a training-free method to accelerate video DiTs, termed Adaptive Caching (AdaCache), which is motivated by the fact that "not all videos are created equal": meaning, some videos require fewer denoising steps to attain a reasonable quality than others. Building on this, we not only cache computations through the diffusion process, but also devise a caching schedule tailored to each video generation, maximizing the quality-latency trade-off. We further introduce a Motion Regularization (MoReg) scheme to utilize video information within AdaCache, essentially controlling the compute allocation based on motion content. Altogether, our plug-and-play contributions grant significant inference speedups (e.g. up to 4.7x on Open-Sora 720p - 2s video generation) without sacrificing the generation quality, across multiple video DiT baselines.
- Abstract(参考訳): 時間的に一貫性のある高忠実度ビデオを生成するのは計算コストがかかる。
より最近の拡散変換器(DiT)は、この文脈では大きな方向を向いているが、より大きなモデルと重い注意機構に依存し、推論速度が遅くなるため、そのような課題を高めているだけである。
本稿では,「全ての動画が平等に作成されているわけではない」という事実を動機として,適応キャッシング(AdaCache)と呼ばれるビデオDiTを高速化するトレーニングフリーな手法を提案する。
これに基づいて、拡散プロセスを通じてキャッシュ計算を行うだけでなく、各ビデオ生成に適したキャッシュスケジュールを考案し、品質とレイテンシのトレードオフを最大化する。
さらに,AdaCache内の動画情報を利用するMoReg方式を導入する。
さらに、当社のプラグアンドプレイコントリビューションは、複数のビデオDiTベースラインにまたがって、生成品質を犠牲にすることなく、大きな推論スピードアップ(Open-Sora 720p - 2sビデオ生成の4.7倍)を実現しています。
関連論文リスト
- Fast and Memory-Efficient Video Diffusion Using Streamlined Inference [41.505829393818274]
現在のビデオ拡散モデルは、計算要求と高いピークメモリ使用量を示す。
本稿では,映像拡散モデルの時間的・空間的特性を利用したストリーム線形推論を提案する。
我々のアプローチはピークメモリと計算オーバーヘッドを大幅に削減し、単一のコンシューマGPU上で高品質なビデオを生成することができる。
論文 参考訳(メタデータ) (2024-11-02T07:52:18Z) - SparseTem: Boosting the Efficiency of CNN-Based Video Encoders by Exploiting Temporal Continuity [15.872209884833977]
本稿では,メモリオーバーヘッドを削減するためのメモリ効率スケジューリング手法と,精度の劣化を最小限に抑えるためのオンライン調整機構を提案する。
SparseTemは効率の良いDetでは1.79x、CRNNでは4.72xの高速化を実現している。
論文 参考訳(メタデータ) (2024-10-28T07:13:25Z) - FasterCache: Training-Free Video Diffusion Model Acceleration with High Quality [58.80996741843102]
FasterCacheは、高品質な生成を伴うビデオ拡散モデルの推論を高速化するために設計された、トレーニング不要の戦略である。
我々は、FasterCacheがビデオの質をベースラインと同等に保ちながら、ビデオ生成を著しく加速できることを示した。
論文 参考訳(メタデータ) (2024-10-25T07:24:38Z) - FreeLong: Training-Free Long Video Generation with SpectralBlend Temporal Attention [57.651429116402554]
本稿では、一貫した長ビデオ生成のための既存の短ビデオ拡散モデルを拡張するための、単純で訓練のないアプローチについて検討する。
短いビデオ拡散モデルを直接適用することで、ビデオの品質が著しく低下することを発見した。
そこで本研究では,長い映像の特徴の周波数分布のバランスをとるために,FreeLongという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T11:52:07Z) - Data Overfitting for On-Device Super-Resolution with Dynamic Algorithm and Compiler Co-Design [18.57172631588624]
本稿では,Content-Awareデータ処理パイプラインが支援する動的ディープニューラルネットワークを提案する。
本手法は,市販携帯電話上でのPSNRとリアルタイム性能(33FPS)の向上を実現する。
論文 参考訳(メタデータ) (2024-07-03T05:17:26Z) - COVE: Unleashing the Diffusion Feature Correspondence for Consistent Video Editing [57.76170824395532]
ビデオ編集は新たな課題であり、現在のほとんどの手法では、ソースビデオを編集するために、事前訓練されたテキスト・トゥ・イメージ(T2I)拡散モデルを採用している。
我々は,高品質で一貫したビデオ編集を実現するために,COVE(Cor correspondingence-guided Video Editing)を提案する。
COVEは、追加のトレーニングや最適化を必要とせずに、事前訓練されたT2I拡散モデルにシームレスに統合することができる。
論文 参考訳(メタデータ) (2024-06-13T06:27:13Z) - Efficient Video Diffusion Models via Content-Frame Motion-Latent Decomposition [124.41196697408627]
本稿では,映像生成のための事前学習画像拡散モデルの拡張として,コンテントモーション潜時拡散モデル(CMD)を提案する。
CMDは、映像を(画像のような)コンテンツフレームと低次元モーションラテント表現の組み合わせとしてエンコードする。
我々は、予め訓練された画像拡散モデルを微調整し、コンテンツフレームを生成し、新しい軽量拡散モデルをトレーニングすることで、動き潜在表現を生成する。
論文 参考訳(メタデータ) (2024-03-21T05:48:48Z) - FreeNoise: Tuning-Free Longer Video Diffusion via Noise Rescheduling [85.60543452539076]
既存のビデオ生成モデルは、典型的には限られた数のフレームで訓練されており、推論中に高忠実度長ビデオを生成することができない。
本研究では,複数のテキストに条件付けされた長編ビデオを生成するためのテキスト駆動能力の拡張の可能性について検討する。
我々は,事前学習したビデオ拡散モデルの生成能力を高めるため,チューニング不要かつ時間効率のパラダイムであるFreeNoiseを提案する。
論文 参考訳(メタデータ) (2023-10-23T17:59:58Z) - Towards High-Quality and Efficient Video Super-Resolution via
Spatial-Temporal Data Overfitting [27.302681897961588]
ディープ畳み込みニューラルネットワーク(DNN)はコンピュータビジョンの様々な分野で広く使われている。
高品質で効率的なビデオ解像度アップスケーリングタスクのための新しい手法を提案する。
市販の携帯電話にモデルをデプロイし,実験結果から,映像品質の高いリアルタイムビデオ解像度を実現することが確認された。
論文 参考訳(メタデータ) (2023-03-15T02:40:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。